Expected inflation, real rates, and stock-bond comovement

Greg Duffee Johns Hopkins University

ECB. October 2018

A plot

Sample corrs between aggregate stock returns and { (changes in nominal yields); (nominal bond returns) } vary substantially over time

- Here: 44-day overlapping periods, daily CRSP value-weighted return, daily change in 10-year nominal Treasury coupon bond yield
- Well-known pattern
- General pattern also holds for UK, Euro countries, Japan, Canada

A plot

Sample corrs between aggregate stock returns and { (changes in nominal yields); (nominal bond returns) } vary substantially over time

- Here: 44-day overlapping periods, daily CRSP value-weighted return, daily change in 10-year nominal Treasury coupon bond yield
- Well-known pattern
- General pattern also holds for UK, Euro countries, Japan, Canada

- Document similar time-varying comovement with stock returns and changes in short-term real rates
- Document that variation over time in stock return real rate comovement appears unrelated to changes in relation between macroeconomy (output, inflation) and asset prices

The usual suspect: regime changes in inflation dynamics

A Campbell-Shiller accounting decomposition

 Cov_t (stock return, long nominal yield) =

Overview

Cov_t (stock return, news about expected avg inflation)

+ Cov_t (stock return, news about expected avg real rates)

 $+ Cov_t$ (stock return, news about expected excess bond rets)

 News of higher expected future inflation is either bad or good for stocks

But central role of inflation seems wrong

Overview

Standard deviation of quarterly revisions in expected average inflation over the next five years

Source	Period	Basis Points
SPF + model, Duffee (2018)	1968Q4-2013Q4 1968Q4-1979Q2 1979Q3-1982Q4 1983Q1-2008Q2 2008Q3-2013Q4	23 27 33 16 8
Burkhardt and Hasseltoft (2012)	Countercyclical infl regime Procyclical infl regime	82 40
Song (2017)	Countercyclical/Active Fed Countercyclical/Passive Fed Procyclical/Active Fed	79 104 44

Central role of inflation seems wrong (2)

Overview

Standard deviation of quarterly revisions in expected average inflation over the next five years

Source	Period	Basis Points
SPF + model, Duffee (2018)	1968Q4–2013Q4 1968Q4–1979Q2	23 27
	1979Q3–1982Q4 1983Q1–2008Q2 2008Q3–2013Q4	33 16 8
David and Veronesi (2013)	Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 Regime 6	12 30 17 48 9 21

Central role of inflation seems wrong (2)

Standard deviation of quarterly revisions in expected average inflation over the next five years

Source	Period	Basis Points
SPF + model, Duffee (2018)	1968Q4-2013Q4 1968Q4-1979Q2 1979Q3-1982Q4	23 27 33
	1983Q1–2008Q2 2008Q3–2013Q4	16 8
David and Veronesi (2013)	Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 Regime 6	12 30 17 48 9 21

Money illusion!

Short-term real rates

- We do not observe inflation-indexed short rates
- I construct mid-quarter ex ante three-month, one-year real rates by subtracting consensus survey forecasts of inflation over next quarter, next year
 - Survey of Professional Forecasters, 1968Q4 through 2017Q4
 - Conclusion in the forecasting literature: consensus forecasts are "right at the frontier of our forecasting ability." (Faust and Wright 2013 handbook chapter)
- Other data: quarterly excess aggregate stock return, 10-year nominal yield

Correlations with quarterly stock returns

Sample [Num Obs]	Three Month Real Rate	One Year Real Rate	Ten Year Nominal Yield
100001 100001	0.00	0.40	0.00
1969Q1 – 1996Q4 [112]	0.00	-0.13	-0.22
1997Q1 – 2007Q4 [44]	0.43	0.45	0.20
2008Q1 - 2017Q4 [40]	0.23	0.28	0.28
1997Q1 – 2017Q4 [84]	0.32	0.36	0.24

, momodolog,

 Measure "macro news" by quarterly revisions in consensus survey forecasts of expected real GDP growth, expected inflation

$$\epsilon_{t,t+\tau}^{x} = E_{t}(x_{t+\tau}) - E_{t-1}(x_{t+\tau}), \qquad x \in \{y,\pi\}$$

- Revisions available for quarters 0 through 3
- Project quarterly excess stock returns, changes in real rates on contemporaneous macro news
 "macro spanned" piece, "residual" piece
- Split covariance between stock returns, changes in real rates into a "macro" covariance and a "residual" covariance

Real and Nominal

How many types of macro news are there?

Real GDP growth

	Contribution (percent)					
Sample	1st PC	2nd PC	3rd PC	4th PC		
1969Q1 - 1996Q4 (107 obs)	57.8	29.3	10.4	2.5		
1997Q1 – 2017Q4 (84 obs)	90.0	6.4	2.5	1.1		

Inflation

	Contribution (percent)					
Sample	1st PC	2nd PC	3rd PC	4th PC		
1969Q1 - 1996Q4 (107 obs)	85.3	8.7	3.6	2.4		
1997Q1 – 2017Q4 (84 obs)	84.4	10.0	3.8	1.8		

- Quarterly data and quarterly forecast horizons
- First PC is blue, second PC is red

The system of equations

Two forecast innovations for each of GDP growth and inflation

$$\epsilon_t \equiv \left(\begin{array}{ccc} \epsilon_{t,t}^{y} & \epsilon_{t,t+2}^{y} & \epsilon_{t,t}^{\pi} & \epsilon_{t,t+2}^{\pi} \end{array} \right)'$$

Projections

$$\left(egin{array}{c} \Delta r_t^{(1)} \ \Delta r_t^{(4)} \ ext{exRet}_t \end{array}
ight) = \mu + extsf{F}\epsilon_t + \eta_t$$

Covariances

$$\mathsf{Cov}\left(\begin{array}{c} \Delta r_t^{(1)} \\ \Delta r_t^{(4)} \\ \mathit{exRet}_t \end{array}\right) = \underbrace{F\,\mathsf{Cov}(\epsilon_t)F'}_{\mathsf{macro\ covariance}} + \underbrace{\mathsf{Cov}(\eta_t)}_{\mathsf{residual\ covariance}}$$

 OLS, exactly identified moments for covariances, stack for GMM

Why does this decomposition make sense?

- Aren't changes in short-term real rates always macro shocks?
 - Taylor rule logic short nominal rate driven by output. inflation, and monetary policy shocks
- Superficial logic here monetary policy shock is a macro shock to the extent it affects expectations of future output, inflation
- Better logic world with four or fewer major macro shocks will have those shocks spanned by "macro shocks"

Explaining stock returns and changes in real rates

0 - --- - 1 -

Regressions on the four types of "macro news" from consensus forecast revisions

[Num Obs]	Variable	Std Dev	R^2
1969Q1 – 1996Q4 [112]	3-month rate 1-year rate stock return	1.03 0.92 8.09	0.30 0.29 0.09
1997Q1 – 2016Q4 [84]	3-month rate 1-year rate stock return	0.46 0.37 7.63	0.31 0.30 0.34

Macro and residual covariances

0 - --- 1 -

Sample [Num Obs]	Variable	Macro Covar	Residual Covar
1969Q1 – 1996Q4	3-month rate	1.27*	-1.30 (0.05)
[112]	1-year rate	(0.77) 0.89 (0.67)	(0.85) -2.07** (0.85)
1997Q1 – 2017Q4 [84]	3-month rate	1.00** (0.50)	0.11 (0.23)
. ,	1-year rate	0.81*** (0.30)	0.19 (0.17)
Test of Equality Across Samples	3-month rate	0.28 (0.92)	-1.42 (0.88)
·	1-year rate	0.08 (0.73)	-2.26*** (0.87)

- Black is product of fitted innovations of aggregate excess stock return, one-year ex ante real rate
- Red is product of residual innovations

Revisions in mean survey forecasts (percent)

	Revision for (Quarter t	Revision for Quarter $t+2$		
	GDP Growth Inflation		GDP Growth	Inflation	
Q4	-0.35	-1.29	0.04	-0.54	
Q1	-0.44	-0.91	0.09	-0.37	

Real interest rates and stock returns (percent)

		Predict	ed				
	Stock Δ in		Δ in	Stock	Δin	∆ in	
	Return	1 Q Rate	1 Yr Rate	Return	1 Q Rate	1 Yr Rate	
Q4	3.9	-0.12	-0.33	33.9	0.08	-2.15	
Q1	3.0	-0.39	-0.54	-8.7	4.27	3.04	

Adding a long-term nominal bond yield

- Cholesky decomposition of covariance matrix of (in order)
 4 macro news variables (consensus forecasts), 1-q, 1-yr real rates, 10-yr nominal yield, excess aggregate stock return
- Responses to 1st 4 innovations determine macro covariances; all else, residual covariances

Cholesky decomposition, early sample

	Forecast Revisions				Ex A	4nte	10 Yr	
		t + 2		t + 2	—R. R	ates—	Nom	
	GDP	GDP	π	π	3 Mon	1 Yr	Yield	Ret
GDP, t	0.34							
GDP, +2	0.03	0.19						
π , t	-0.15	-0.34	0.61					
π ,+2	-0.03	-0.23	0.28	0.28				
1 Quarter	0.65	0.04	-0.17	0.05	1.03			
1 Year	0.56	0.01	-0.07	-0.11	0.80	0.46		
10 Year	0.26	-0.15	0.17	0.01	0.37	0.29	0.35	
Stock Ret	1.49	1.42	-1.30	0.55	-1.27	-2.35	-0.18	7.64

Macro and residual covariance components, early sample

	Forecast Revisions					
	Total	Total $t+2$ $t+2$				
	Covar	GDP	GDP	π	π	All Else
3 Mon R. Rate	-0.03	0.97	0.06	0.22	0.03	-1.30
1 Yr R. Rate	-1.19	0.84	0.02	0.10	-0.06	-2.07
10 Yr Nom Yield	-1.26	0.39	-0.21	-0.22	0.01	-1.22

Cholesky decomposition, late sample

	—— GDP	Forecast Revisions $t+2$ $t+2$ T T			Ex Ante —R. Rates— 3 Mon 1 Yr		Ret	
							Yield	
GDP, t	0.23							
GDP, +2	0.06	0.06						
π , t	0.09	-0.04	0.31					
π ,+2	0.03	-0.02	0.10	0.10				
1 Quarter	0.18	0.06	-0.17	0.03	0.38			
1 Year	0.19	-0.01	-0.08	0.01	0.23	0.21		
10 Year	0.14	-0.03	0.07	-0.07	0.00	0.18	0.29	
Stock Ret	3.99	1.60	-1.16	-0.11	0.30	0.59	0.55	6.14

Macro and residual covariance components, late sample

	Forecast Revisions								
	Total		t + 2		t + 2				
	Covar	GDP	GDP	π	π	All Else			
3 Mon R. Rate	1.11	0.71	0.09	0.20	0.00	0.11			
1 Yr R. Rate	1.00	0.74	-0.02	0.09	0.00	0.19			
10 Yr Nom Yield	0.69	0.55	-0.05	-0.08	0.01	0.26			

Are the macro covariances consistent with standard macro-finance models?

Perhaps not

- RA models, real rates move with news about expected growth, not news about current growth
- Example: Kung (JFE 2015), New Keynesian endogenous growth
 - NK endogenous growth generates negative relation between expected growth, inflation; problem for macro covariances with nominal yields

Kung (2015) model: simulated data, Cholesky decomposition

	Forecast Revisions				Ex A	Ex Ante		
		t + 2	+2 $t+2$		—R. R	ates—	Nom	
	GDP	GDP	π	π	3 Mon	1 Yr	Yield	Ret
GDP, t	1.16							
GDP, +2	0.01	0.19						
π , t	-0.10	-1.38	0.15					
π ,+2	-0.41	-0.54	0.02	0.03				
1 Quarter	-0.30	1.08	-0.17	0.02	0.72			
1 Year	-0.07	0.45	-0.09	0.01	0.28	0.02		
10 Year	-0.26	-0.16	0.02	0.00	0.02	-0.04	0.02	
Stock Ret	2.91	1.17	-0.16	-0.10	-0.28	-0.01	0.26	0.42

Kung (2015) mode; macro and residual covariance components

	Forecast Revisions								
	Total $t+2$ $t+2$								
	Covar	GDP	GDP	π	π	All Else			
3 Mon R. Rate	0.40	-0.88	1.25	0.03	0.00	-0.20			
1 Yr R. Rate	0.33	-0.21	0.53	0.01	0.00	-0.08			
10 Yr Nom Yield	-0.94	-0.75	-0.19	0.00	0.00	0.00			

Concluding comments

I continue to attempt to understand why the conditional covariance between aggregate stock returns and real, nominal bond yields varies over time