Inequality, Business Cycles and Monetary-Fiscal Policy

Anmol Bhandari Minnesota

Oregon

David Evans Mikhail Golosov Chicago

Thomas Sargent NYU

Introduction

- How should monetary and fiscal policy respond to aggregate shocks?
- Workhorse New Keynesian models assume the representative agent
- In the data agents are heterogeneous
 - · differ in earnings and wealth
 - · differ in exposure to aggregate shocks

 How should the Ramsey planner take this heterogeneity into account when setting policy?

Numerical methods

- Main difficulty: State space is big and its law of motion is governed by yet-unknown optimal policies
 - state = distribution of each agent's asset holdings and previous period marginal utilities
- Existing numerical tools are inapplicable
 - require knowing the LoM of the system or where it converges
- We develop novel tools to solve HA economies that does not rely on knowing anything about its LoM/invariant distribution
 - very fast: much faster than conventional techniques
 - easily extend to second- and higher-order: easy to capture risk, time-variant volatility,...

Economic insights

- Two objectives of the planner:
 - · price stability: minimize welfare losses due to costly price setting
 - · insurance: due to heterogeneity and market incompleteness
- · Quantitatively, insurance concern swamp price stability
 - large cut in interest rates to negative demand (mark up) shock (cf: small increase in RANK)
 - lower real interest rate in response to supply (tfp) shock
 (cf: keep real rate unchanged in RANK)
 - Taylor rules approximate optimum poorly (cf: approximate well in RANK)

Environment

Households

Individual household of type i maximizes

$$\max_{c,n,b} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{c^{1-\nu}}{1-\nu} - \frac{n^{1+\gamma}}{1+\gamma} \right)$$

subject to

$$c_{i,t} + Q_t b_{i,t} = (1 - Y_t) W_t \epsilon_{i,t} n_{i,t} + T_t + s_i D_t + \frac{b_{i,t-1}}{1 + \Pi_t}$$

Affine tax system: $\{Y_t, T_t\}$

 $b_{i,t}$: real bond holdings

 D_t , s_i : aggregate dividends and agent i share of them

 $\epsilon_{i,t}$: idiosyncratic shocks

 Q_t , Π_t : nominal interest rate, inflation rate

Firms

Competitive final good sector:

$$Y_{t} = \left[\int_{0}^{1} y_{t}(j)^{\frac{\Phi_{t}-1}{\Phi_{t}}} dj \right]^{\frac{\Phi_{t}}{\Phi_{t}-1}}$$

Monopolistically competitive intermediate good sector:

Production

$$y_t(j) = n_t^D(j)$$

· Profits net of Rotemberg menu costs

$$Pr_t(j) = \left[\frac{p_t(j)}{P_t} - \frac{W_t}{P_t}\right] \left(\frac{p_t(j)}{P_t}\right)^{-\Phi_t} Y_t - \frac{\psi}{2} \left(\frac{p_t(j)}{p_{t-1}(j)} - 1\right)^2$$

• Firms maximize: $\max_{\{p_t(j)\}_t} \mathbb{E}_0 \sum_t M_t Pr_t(j)$ M_t is SDF based on shareholders consumption

Market clearing

$$n_t^D(j) = N_t^D = \int \epsilon_{i,t} n_{i,t} di$$

$$D_t = Y_t - W_t N_t - \frac{\psi}{2} \Pi_t^2$$

$$C_t + \bar{G} = Y_t - \frac{\psi}{2} \Pi_t^2$$

$$\int_i b_{i,t} di = B_t$$

Shocks

Aggregate shocks:

$$\ln\Phi_t=\rho_\Phi\ln\Phi_{t-1}+(1-\rho_\Phi)\ln\bar\Phi+\mathcal E_{\Phi,t},$$

$$\ln\Theta_t=\ln\Theta_{t-1}+\mathcal E_{\Theta,t}$$

Idiosyncratic shocks:

$$\ln \epsilon_{i,t} = \ln \Theta_t + \ln \theta_{i,t} + \epsilon_{\epsilon,i,t}$$

$$\ln \theta_{i,t} = \rho_\theta \ln \theta_{i,t-1} + f(\theta_{i,t-1}) \mathcal{E}_{\Theta,t} + \epsilon_{\theta,i,t}$$

 \cdot $\mathit{f}(\cdot)$ generates heterogeneous exposures to aggregate shocks

Ramsey problem

Initial condition: $\{\theta_{i,-1}, b_{i,-1}, s_i\}_i$

Competitive equilibrium: Given an initial condition and a monetary-fiscal policy $\{Q_t, Y_t, T_t\}_t$, quantities and prices are such that all agents optimize and markets clear.

Welfare criterion: Utilitarian

Optimal monetary-fiscal policy: A sequence $\{Q_t, Y_t, T_t\}_t$ that maximizes C.E. welfare for a given initial condition

Optimal monetary policy: For a given \bar{Y} , a sequence $\{Q_t, T_t\}_t$ and $Y_t = \bar{Y}$ for all t that maximizes C.E. welfare for a given initial condition

Solution Method

Ramsey problem

Optimality conditions

$$(1 - Y_t)W_t \epsilon_{i,t} c_{i,t}^{-\nu} = n_{i,t}^{\gamma},$$

$$Q_{t-1} c_{i,t-1}^{-\nu} = \mathbb{E}_{t-1} c_{i,t}^{-\nu} (1 + \Pi_t)^{-1},$$

$$\frac{1}{\psi} Y_t \left[1 - \Phi_t \left(1 - \frac{W_t}{\alpha N_t^{\alpha - 1}} \right) \right] - \Pi_t (1 + \Pi_t)$$

$$+ \beta \mathbb{E}_t \left(\frac{C_{t+1}}{C_t} \right)^{-\nu} \Pi_{t+1} (1 + \Pi_{t+1}) = 0$$

Ramsey problem: maximize expected utility subject to these + feasibility + budget constraints

State-space

- "Pareto-Negishi" weight $m_{i,t} \equiv \left(\frac{c_{i,t}}{C_t}\right)^{\nu}$ + multipliers on budget constraints
 - Ω_t is cdf over $m_{i,t}$

- Policy functions
 - · aggregate variables: $\tilde{X}(\mathcal{E},\Omega)$
 - · individual variables: $\tilde{\mathbf{x}}(\varepsilon, \mathcal{E}, \mathbf{m}, \Omega)$

State-space

All optimality conditions can be written as

$$F\left(\mathbb{E}_{-}\tilde{X},\tilde{X},\mathbb{E}_{+}\tilde{X},\tilde{X},\varepsilon,\mathcal{E},m\right)=0\quad\forall\varepsilon,\mathcal{E},m$$

$$R\left(\int \tilde{\mathbf{x}}d\Omega,\tilde{\mathbf{X}},\mathcal{E}\right)=\mathbf{0}\quad\forall\mathcal{E}$$

$$\widetilde{\Omega}\left(\mathcal{E},\Omega
ight)\left(\mathbf{z}
ight)=\int\iota\left(\widetilde{\boldsymbol{m}}\left(\varepsilon,\mathcal{E},\mathbf{y},\Omega
ight)\leq\mathbf{z}
ight)\mathrm{d}\Pr\left(\varepsilon\right)\mathrm{d}\Omega\left(\mathbf{y}
ight)\quadorall\mathbf{z},\mathcal{E}$$

- · LoM is depends on yet-unknown optimal policy choices
 - standard techniques (e.g. approx around known ergodic distribution) are unapplicable

Our approach

- Parameterize uncertainty by σ : $\tilde{\mathbf{X}}\left(\sigma\mathcal{E},\Omega;\sigma\right)$, $\tilde{\mathbf{X}}\left(\sigma\varepsilon,\sigma\mathcal{E},\mathbf{m},\Omega;\sigma\right)$
- Construct Taylor expansion w.r.t. σ around any current state Ω

$$\begin{split} \tilde{\mathbf{X}}\left(\sigma\mathcal{E},\Omega;\sigma\right) &= \tilde{\mathbf{X}}\left(0,\Omega;0\right) + \left[\tilde{\mathbf{X}}_{\mathcal{E}}\left(0,\Omega;0\right)\mathcal{E} + \tilde{\mathbf{X}}_{\sigma}\left(0,\Omega;0\right)\right]\sigma + \dots \\ &\equiv \bar{\mathbf{X}}\left(\Omega\right) + \left[\bar{\mathbf{X}}_{\mathcal{E}}\left(\Omega\right)\mathcal{E} + \bar{\mathbf{X}}_{\sigma}\left(\Omega\right)\right]\sigma + \end{split}$$

and similarly for $\tilde{\mathbf{x}}$ ($\sigma \varepsilon$, $\sigma \mathcal{E}$, \mathbf{m} , Ω ; σ)

- · General approach
 - expand mappings F and R w.r.t. σ and use method of undetermined coefficients to find coefficients $\bar{X}_{\mathcal{E}}(\Omega)$, \bar{X}_{σ} ,...
 - use that to find next period state $\widetilde{\Omega}\left(\mathcal{E},\Omega\right)$
 - · repeat expansion next period around $\widetilde{\Omega}\left(\mathcal{E},\Omega\right)$

Making it work fast

- 1. Zeroth order expansion is $\bar{\Omega}\left(\Omega\right)=\Omega$ for all Ω
 - · Pareto-Nigishi weights are constant in deterministic economy
 - even if other aggregate variables have deterministic dynamics
- 2. Coefficients $\bar{\mathbf{X}}_{\mathcal{E}}(\Omega), \{\bar{\mathbf{x}}_{\mathcal{E}}(\Omega, m)\}_m$ solve a linear system of equations
 - · corresponding to equilibrium fixed point
 - · but very large, grows exponentially in $\mathit{K} \equiv \dim$ of grid Ω
- 3. We prove Factorization theorem: can solve *K* independent systems simultaneously of 2 dim *X* eqn and unknowns
 - · lots of cool economics behind this result
 - fast: \approx the speed of inversion of 14 \times 14 matrix for any K
 - · extends to other coefficients and higher order approx

Application

Calibration

- · Standard parameterization of preferences, agg shocks
 - · to be comparable with RANK models
- Initial conditions are matched to SCF 2007 cross-section
 - · assets holdings and wages are positively correlated
- Idiosyncratic shocks: match facts in Storesletten et al (2004) and Guvenen et al (2014) under a stylized model of U.S. monetary-fiscal policy

Monetary response to markup shock

- Optimal monetary response to a markup shock $\mathcal{E}_{\Phi,t}$
 - increases desired markup $1/(\Phi_t 1)$
 - \cdot \bar{Y} is set to maximize welfare
- Compare to RANK economy under the same assumptions
 - · easy to see that $\bar{Y}=-1/\bar{\Phi}$

Monetary response to 1 s.d. markup increase

Discussion

- · RANK: planner wants to stabilize nominal prices
 - · higher markup over marginal cost push prices up
 - "lean against the wind": increase nominal interest rates to lower output/marginal cost, offset inflationary pressure
 - · effects are quantitatively small
- · HANK: planner also cares about insurance
 - · markup shock is a windfall for firmowners, loss for workers
 - · cannot be insured away due to lack of Arrow securities
 - provides insurance by cutting interest rate to boost wages
- Quantitatively, insurance motive dominates
 - losses from mild inflations are tiny in standard NK models
 - losses from lack of insurance are large since agents' asset holdings are very unequal

Monetary-fiscal response to 1 s.d. markup increase

Monetary response to 1 s.d. TFP drop

Monetary-fiscal response to 1 s.d. TFP drop

Discussion

- · RANK: "target real interest rate" to maintain price stability
 - · constant with growth rate shocks, time-variant with AR(1)
- HANK: lower real rate to provide insurance
 - · low wage/low asset agents hurt the most
 - · lower returns on high wage/high asset agents equalizes losses
- · Quantitatively, insurance motive dominates

Comparison to Taylor Rules

A simple Taylor rule $i_t = \overline{i} + 1.5\pi_t$

MPC heterogeneity

- · In baseline economy agents borrow subject to natural debt limit
 - · MPCs are similar across agents
- Jappelli and Pistaferri (2014): MPCs are lower for richer households
 - · also Kaplan et al (2018), Auclert (2017)
- Extension: populate economy with hand-to-mouth types
 - probability of being hand-to-mouth depends on stock ownship status
 - chosen so that model matches Jappelli and Pistaferri (2014) regressions

Role of MPC heterogeneity

Timing of transfers

- MPC heterogeneity affects response of interest rates to markup but not TFP shock
 - · interest rates directly affect only agents who can trade
 - this attenuates its affect on agg quantities, less so on asset prices determined by the marginal investor
- With credit constraints and mpc heterogeneity timing of transfers matters
 - optimal to raise aggregate demand through higher transfers rather than exclusively lowering nominal rate
- Much intuition follows from insights in Kaplan et al (2018)

Conclusions

 New methods to tackle planning problems with heterogeneity + incomplete markets + aggregate shocks

 Heterogeneity has a large impact on the conduct of monetary and fiscal policy