Discussion:

Distributional Effects of Monetary Policy by Matthias Doepke, Martin Schneider, & Veronika Selezneva

Ralph Luetticke

University College London

March 2019

Distributional Effects of Monetary Policy

- Inflation exposure
- Interest rate exposure
- Asset price exposure
- Earnings heterogeneity

This paper: Distributional Effects of Inflation

- Unanticipated jump in the price level of 65%
- Anticipated 5p.p. higher inflation for ten years
- (1p.p. drop in real rate for 10 years)

Unanticipated jump in the price level of 65%

Framework

Inflation exposure accounting framework:

Incidence of inflation across households from the data

Life-cycle household problem:

- Response of consumption, hours worked, housing
- Long-term nominal assets (only nominal rigidity)

Not modeled:

- Real rate, wages, goods prices
- Portfolio response

Summary of accounting framework

- Follows Doepke and Schneider (2006)
- Group households by age 25-2.5-75 and rich vs non-rich (renters vs homeowners)
- Short real and short, mid, and long nominal
- Duration of mid equals 6 years and long 10 years
- Combine both assets to achieve duration observed in the data

Summary of household model

Households

- Overlapping generations
- States: Age, house ownership, productivity, time preferences, asset portfolio
- Choices: Consumption, renting vs owning, hours worked, total savings

Housing market

- Fixed supply of housing
- Rental rate equals world return on capital

Government

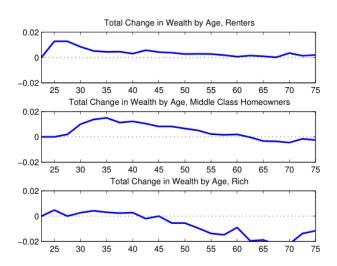
- Supplies bonds
- Taxes consumption and labor

Heterogeneity in inflation exposure

		Age cohort							
		≤ 34	35 - 44	45 - 54	55 - 64	65 - 74	> 74		
EA	Rich HHs	-1.5	5.5	10.3	13.9	12.3	20.7		
	Middle Class	-80.4	-15.3	1.0	9.6	13.7	22.8		
	Poor HHs	1.0	-4.2	9.4	14.5	12.4	15.5		
	Total	-48.3	-11.6	3.1	11.0	13.2	19.3		
US	Rich HHs	-14.0	3.8	6.6	16.3	16.7	27.5		
	Middle Class	-114.0	-31.6	-4.8	14.0	25.2	38.1		
	${\bf Poor\ HHs}$	-36.6	-33.8	-5.5	7.5	17.5	26.4		
	Total	-42.6	-10.1	2.3	15.2	19.4	30.6		
CA	Rich HHs	-2.7	2.2	16.4	17.5	27.5	29.8		
	Middle Class	-89.4	-26.5	11.4	26.0	29.4	33.9		
	Poor HHs	-52.1	-27.1	-3.3	20.7	14.2	23.8		
	Total	-35.8	-11.2	13.1	22.1	27.9	31.9		

Table 5a: Inflation exposure (NNP/NW, % points) across age cohorts

Adam & Zhu, 2016


Heterogeneity in inflation exposure

		Age cohort								
		≤ 34	35 - 44	45 - 54	55 - 64	65 - 74	> 74			
EA	Rich HHs	-1.5	5.5	10.3	13.9	12.3	20.7			
	Middle Class	-80.4	-15.3	1.0	9.6	13.7	22.8			
	Poor HHs	1.0	-4.2	9.4	14.5	12.4	15.5			
	Total	-48.3	-11.6	3.1	11.0	13.2	19.3			
US	Rich HHs	-14.0	3.8	6.6	16.3	16.7	27.5			
	Middle Class	-114.0	-31.6	-4.8	14.0	25.2	38.1			
	Poor HHs	-36.6	-33.8	-5.5	7.5	17.5	26.4			
	Total	-42.6	-10.1	2.3	15.2	19.4	30.6			
CA	Rich HHs	-2.7	2.2	16.4	17.5	27.5	29.8			
	Middle Class	-89.4	-26.5	11.4	26.0	29.4	33.9			
	Poor HHs	-52.1	-27.1	-3.3	20.7	14.2	23.8			
	Total	-35.8	-11.2	13.1	22.1	27.9	31.9			

Table 5a: Inflation exposure (NNP/NW, % points) across age cohorts

Adam & Zhu, 2016

Redistribution via unanticipated inflation shock

Model

Model gives household responses in

- Consumption, labor, and housing to inflation shock
- Welfare across households

Model

Retirees: Consume less

• Workers: Consume more, work less, buy housing

• Total: Consumption falls, hours fall, house prices go up

Anticipated inflation

- Similar results with anticipated inflation
- Maturity now matters (e.g. renters not affected)
- Size of effects smaller but same sign

Comments

What is the right model of retirees?

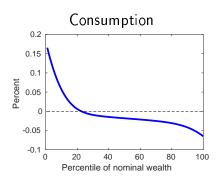
- Bequest
 - Wealth effects on the labor supply of heirs
 - Intergenerational precautionary savings
- Health expense shocks
- Empirical evidence on MPC of retirees?

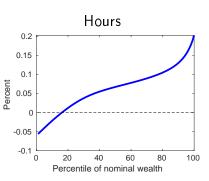
Comments

- Portfolios fixed
- Government and foreign holdings of nominal assets
- Nominal rigidities in labor and product markets

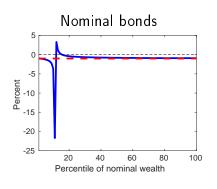
Portfolio choice

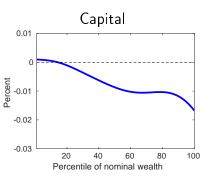
- This paper assumes a fixed portfolios over k, b_0, b_1, b_3
- However, inflation affects
- 1 Portfolio choices
- 2 Quantity of assets (liquidity)

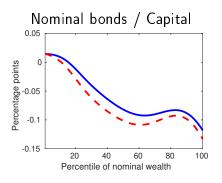

Endogenous Portfolio Choices


- Two-asset HANK model with liquid nominal bonds and illiquid real capital (random participation in capital market, Luetticke (2018))
- Endogenous value of liquidity that varies across households and across time
- $LP = E_t \frac{q_{t+1} + r_{t+1}}{q_t} E_t \frac{R_{t+1}^{B}}{\pi_{t+1}} = 200 \, basis points$

New mechanism:


- Heterogeneity in household portfolio responses
- Insurance via liquidity

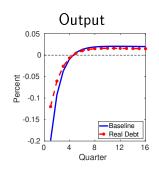

Household response to inflation shock (1%)

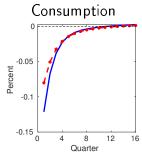


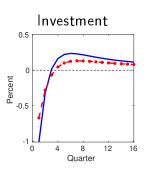
Household response to inflation shock (1%)

Household response to inflation shock (1%)

Inflation as amplification channel


• Fisher channel:


Aggr shock (monetary, financial, real)


- 1 inflation falls
- 2 real value of debt goes up
- 3 consumption falls
- 1' inflation falls

etc

Two-asset HANK model in GE (Luetticke, 2018)

