Inattention, Heterogeneity, Investment: monetary policy and business cycles revisited

Adrien Auclert, Matt Rognlie and Ludwig Straub

European Central Bank, March 2019

Q: How does monetary policy affect output? What model to use?

Representative agent (RA)

- √ simple and fast to use
- √ can estimate with habits
 [Christiano-Eichenbaum-Evans, Smets-Wouters]
- √ then, matches macro behavior [e.g. impulse response to mon. policy shock]
- X at odds with micro behavior
 [e.g. MPCs]

Q: How does monetary policy affect output? What model to use?

Representative agent (RA)

- √ simple and fast to use
- √ can estimate with habits
 [Christiano-Eichenbaum-Evans, Smets-Wouters]
- √ then, matches macro behavior
 [e.g. impulse response to mon. policy shock]
- X at odds with micro behavior
 [e.g. MPCs]

- X difficult and slow to use
- x no way to estimate (habits??)
- X does not match macro behavior
- √ in line with micro behavior

Q: How does monetary policy affect output? What model to use?

Representative agent (RA)

- √ simple and fast to use
- √ can estimate with habits
 [Christiano-Eichenbaum-Evans, Smets-Wouters]
- √ then, matches macro behavior
 [e.g. impulse response to mon. policy shock]
- X at odds with micro behavior
 [e.g. MPCs]

- √ simple and fast to use
- x no way to estimate (habits??)
- X does not match macro behavior
- √ in line with micro behavior

Q: How does monetary policy affect output? What model to use?

Representative agent (RA)

- √ simple and fast to use
- √ can estimate with habits
 [Christiano-Eichenbaum-Evans, Smets-Wouters]
- √ then, matches macro behavior [e.g. impulse response to mon. policy shock]
- X at odds with micro behavior
 [e.g. MPCs]

- √ simple and fast to use
- ✓ estimate with inattention
 [Gabaix-Laibson, Mankiw-Reis, Carroll et al]
- X does not match macro behavior
- √ in line with micro behavior

Q: How does monetary policy affect output? What model to use?

Representative agent (RA)

- √ simple and fast to use
- √ can estimate with habits
 [Christiano-Eichenbaum-Evans, Smets-Wouters]
- √ then, matches macro behavior [e.g. impulse response to mon. policy shock]
- X at odds with micro behavior
 [e.g. MPCs]

- √ simple and fast to use
- ✓ estimate with inattention
 [Gabaix-Laibson, Mankiw-Reis, Carroll et al]
- √ matches macro behavior
- √ in line with micro behavior

Q: How does monetary policy affect output? What model to use?

Representative agent (RA)

- √ simple and fast to use
- √ can estimate with habits
 [Christiano-Eichenbaum-Evans, Smets-Wouters]
- √ then, matches macro behavior [e.g. impulse response to mon. policy shock]
- X at odds with micro behavior
 [e.g. MPCs]

Heterogeneous agents (HA)

- √ simple and fast to use
- ✓ estimate with inattention
 [Gabaix-Laibson, Mankiw-Reis, Carroll et al]
- √ matches macro behavior
- √ in line with micro behavior

Goal: Make HA models ready for quantitative macro analysis!

- Start with **HA model** ...
 - Nominal price & wage rigidities
 - Capital adjustment costs [Hayashi, Tobin]
 - Illiquid assets & high MPCs [Kaplan-Moll-Violante, Bayer et al]
 - Inattention of households + firms

- Start with HA model ...
 - Nominal price & wage rigidities
 - Capital adjustment costs [Hayashi, Tobin]
 - Illiquid assets & high MPCs [Kaplan-Moll-Violante, Bayer et al]
 - Inattention of households + firms

Estimate to IRFs to mon. pol. shock:

- → large estimated inattention [half-life of 6 quarters]
- $\rightarrow \ \text{hump-shaped impulse responses}$
- \rightarrow dampens direct effect of r on C

- Start with HA model ...
 - Nominal price & wage rigidities
 - Capital adjustment costs [Hayashi, Tobin]
 - Illiquid assets & high MPCs
 [Kaplan-Moll-Violante, Bayer et al]
 - Inattention of households + firms

Estimate to IRFs to mon. pol. shock:

- → large estimated inattention [half-life of 6 quarters]
- \rightarrow hump-shaped impulse responses
- \rightarrow dampens direct effect of r on C

Implications:

- 1. **Investment** is *key* for **monetary transmission**
 - ullet responds directly to $r\longrightarrow \mathbf{amplified}$ by households' indirect response
 - **state dependence:** mon. pol. \sim 90% less powerful if *I* is constrained

- Start with HA model ...
 - Nominal price & wage rigidities
 - Capital adjustment costs [Hayashi, Tobin]
 - Illiquid assets & high MPCs
 [Kaplan-Moll-Violante, Bayer et al]
 - Inattention of households + firms

Estimate to IRFs to mon. pol. shock:

- → large estimated inattention [half-life of 6 quarters]
- \rightarrow hump-shaped impulse responses
- \rightarrow dampens direct effect of r on C

Implications:

- 1. **Investment** is *key* for **monetary transmission**
 - ullet responds directly to $r\longrightarrow \mathbf{amplified}$ by households' indirect response
 - state dependence: mon. pol. \sim 90% less powerful if $\it I$ is constrained
- 2. **Investment** is key for **business cycles**

Our paper brings together three literatures

1. HA / tractable HA models (with nominal rigidities)

- monetary policy: Gornemann-Kuester-Nakajima 2012, McKay-Nakamura-Steinsson 2016, Werning 2016, Ravn Sterk 2018, Kaplan-Moll-Violante 2018, Auclert 2019, ...
- others: McKay-Reis 2016, Guerrieri-Lorenzoni 2018, Auclert-Rognlie-Straub 2018, Acharya Dogra 2018, Bilbiie 2019, Hagedorn-Manovskii-Mitman 2019, ...

2. Estimation of RA models

- limited info: Rotemberg-Woodford 1997, Christiano-Eichenbaum-Evans 2005, Altig-Christiano-Eichenbaum-Linde 2011, ...
- full info: Ireland 2004, Smets-Wouters 2007, An-Schorfheide 2007, ...

3. Deviations from rational expectations and monetary policy

- cognitive discounting (Gabaix 2018), lack of common knowledge (Woodford 2003, Angeletos-Lian 2018), rational inattention (Sims 2002, Maćkowiak-Wiederholt 2009, 2015, Zorn 2018), k-level thinking (García-Schmidt-Woodford 2019, Farhi-Werning 2018)
- sticky information (Gabaix-Laibson 2001, Mankiw-Reis 2002, 2006, Carroll et al 2018...)

Outline

- 1 Why inattention? (and not habits)
- 2 Inattentive HA model
- 3 Estimation
- Result 1: Investment is the transmission mechanism
- 5 Result 2: Investment drives business cycles
- 6 Conclusion

Why inattention? (and not habits)

Standard model of habit formation:

$$V_{t}(a_{t-1}, c_{t-1}) = \max_{c_{t}, a_{t}} u(c_{t} - \gamma c_{t-1}) + \beta V_{t+1}(a_{t}, c_{t})$$
$$c_{t} + a_{t} \leq (1 + r_{t})a_{t-1} + y_{t}$$

Standard model of habit formation:

(allowing for idios. risk)

$$\begin{aligned} V_{t}\left(a_{t-1}, c_{t-1}; s_{t}\right) &= \max_{c_{t}, a_{t}} u(c_{t} - \frac{\gamma}{c_{t-1}}) \\ &+ \beta \mathbb{E}\left[V_{t+1}\left(a_{t}, c_{t}; s_{t+1}\right) | s_{t}\right] \\ c_{t} + a_{t} &\leq (1 + r_{t})a_{t-1} + y_{t}e(s_{t}) \\ a_{t} &\geq o \end{aligned}$$

Q: How does average agent dynamically react to unanticipated income shock?

 \rightarrow **intertemporal MPCs** $\frac{\partial C_t}{\partial y_0}$ [Auclert-Rognlie-Straub 2018]

Standard model of habit formation:

(allowing for idios. risk)

$$\begin{aligned} V_t\left(a_{t-1}, c_{t-1}; s_t\right) &= \max_{c_t, a_t} u(c_t - \frac{\gamma}{\gamma} c_{t-1}) \\ &+ \beta \mathbb{E}\left[V_{t+1}\left(a_t, c_t; s_{t+1}\right) | s_t\right] \\ c_t + a_t &\leq (1 + r_t) a_{t-1} + y_t e(s_t) \\ a_t &\geq 0 \end{aligned}$$

Q: How does average agent dynamically react to unanticipated income shock?

$$\rightarrow$$
 intertemporal MPCs $\frac{\partial C_t}{\partial y_o}$ [Auclert-Rognlie-Straub 2018]

Intertemporal MPCs in the data

Standard model of habit formation:

(allowing for idios. risk)

$$\begin{aligned} V_{t}\left(a_{t-1}, c_{t-1}; s_{t}\right) &= \max_{c_{t}, a_{t}} u(c_{t} - \frac{\gamma}{c_{t-1}}) \\ &+ \beta \mathbb{E}\left[V_{t+1}\left(a_{t}, c_{t}; s_{t+1}\right) | s_{t}\right] \\ c_{t} + a_{t} &\leq (1 + r_{t})a_{t-1} + y_{t}e(s_{t}) \\ a_{t} &\geq 0 \end{aligned}$$

Q: How does average agent dynamically react to unanticipated income shock?

$$\rightarrow$$
 intertemporal MPCs $\frac{\partial C_t}{\partial y_o}$ [Auclert-Rognlie-Straub 2018]

Intertemporal MPCs in the data

Standard model of habit formation:

(allowing for idios. risk)

$$\begin{aligned} V_{t}\left(a_{t-1}, c_{t-1}; s_{t}\right) &= \max_{c_{t}, a_{t}} u(c_{t} - \frac{\gamma}{c_{t-1}}) \\ &+ \beta \mathbb{E}\left[V_{t+1}\left(a_{t}, c_{t}; s_{t+1}\right) | s_{t}\right] \\ c_{t} + a_{t} &\leq (1 + r_{t})a_{t-1} + y_{t}e(s_{t}) \\ a_{t} &\geq 0 \end{aligned}$$

Q: How does average agent dynamically react to unanticipated income shock?

$$\rightarrow$$
 intertemporal MPCs $\frac{\partial C_t}{\partial y_0}$ [Auclert-Rognlie-Straub 2018]

Intertemporal MPCs in the data

Standard model of habit formation:

(allowing for idios. risk)

$$\begin{aligned} V_{t}\left(a_{t-1}, c_{t-1}; s_{t}\right) &= \max_{c_{t}, a_{t}} u(c_{t} - \gamma c_{t-1}) \\ &+ \beta \mathbb{E}\left[V_{t+1}\left(a_{t}, c_{t}; s_{t+1}\right) \middle| s_{t}\right] \\ c_{t} + a_{t} &\leq (1 + r_{t})a_{t-1} + y_{t}e(s_{t}) \\ a_{t} &\geq o \end{aligned}$$

Q: How does average agent dynamically react to unanticipated income shock?

$$\rightarrow$$
 intertemporal MPCs $\frac{\partial C_t}{\partial y_0}$ [Auclert-Rognlie-Straub 2018]

Intertemporal MPCs in the data

Standard model of habit formation:

(allowing for idios. risk)

$$\begin{aligned} V_{t}\left(a_{t-1}, c_{t-1}; s_{t}\right) &= \max_{c_{t}, a_{t}} u(c_{t} - \gamma c_{t-1}) \\ &+ \beta \mathbb{E}\left[V_{t+1}\left(a_{t}, c_{t}; s_{t+1}\right) \middle| s_{t}\right] \\ c_{t} + a_{t} &\leq (1 + r_{t})a_{t-1} + y_{t}e(s_{t}) \\ a_{t} &\geq o \end{aligned}$$

Q: How does average agent dynamically react to unanticipated income shock?

$$\rightarrow$$
 intertemporal MPCs $\frac{\partial C_t}{\partial y_0}$ [Auclert-Rognlie-Straub 2018]

Intertemporal MPCs in the data

- Our HA approach: sticky information
 [Gabaix-Laibson 2001, Mankiw-Reis 2002, 2006, Carroll-Crawley-Slacalek-Tokuoka-White 2018]
- Focus on single shock: all agents start with belief that economy is in s.s.
- Shock hits \rightarrow agents turn from inattentive (I) to attentive (A), w.p. 1 $-\theta$

- Our HA approach: sticky information
 [Gabaix-Laibson 2001, Mankiw-Reis 2002, 2006, Carroll-Crawley-Slacalek-Tokuoka-White 2018]
- Focus on single shock: all agents start with belief that economy is in s.s.
- Shock hits \rightarrow agents turn from inattentive (I) to attentive (A), w.p. 1 $-\theta$

$$V_{t}^{A}(a_{t-1}; s_{t}) = \max_{c_{t}, a_{t}} u(c_{t}) + \beta \mathbb{E} \left[V_{t+1}^{A}(a_{t}; s_{t+1}) | s_{t} \right]$$

$$V_{t}^{I}(a_{t-1}; s_{t}) = \max_{c_{t}, a_{t}} u(c_{t}) + \beta \mathbb{E} \left[V^{ss}(a_{t}; s_{t+1}) | s_{t} \right]$$

- Our HA approach: sticky information
 [Gabaix-Laibson 2001, Mankiw-Reis 2002, 2006, Carroll-Crawley-Slacalek-Tokuoka-White 2018]
- Focus on single shock: all agents start with belief that economy is in s.s.
- Shock hits \rightarrow agents turn from inattentive (I) to attentive (A), w.p. 1 $-\theta$

$$V_{t}^{A}(a_{t-1}; s_{t}) = \max_{c_{t}, a_{t}} u(c_{t}) + \beta \mathbb{E} \left[V_{t+1}^{A}(a_{t}; s_{t+1}) | s_{t} \right]$$

$$V_{t}^{I}(a_{t-1}; s_{t}) = \max_{c_{t}, a_{t}} u(c_{t}) + \beta \mathbb{E} \left[V^{SS}(a_{t}; s_{t+1}) | s_{t} \right]$$

- Twist: assume *current* aggregates r_t , y_t always observed
- Achieves three goals:
 - 1. agents never violate borrowing constraint
 - 2. (i)MPCs are unchanged
 - 3. beliefs about future path of aggregates sluggish

- Our HA approach: sticky information
 [Gabaix-Laibson 2001, Mankiw-Reis 2002, 2006, Carroll-Crawley-Slacalek-Tokuoka-White 2018]
- Focus on single shock: all agents start with belief that economy is in s.s.
- Shock hits \rightarrow agents turn from inattentive (I) to attentive (A), w.p. 1 $-\theta$

$$V_{t}^{A}(a_{t-1}; s_{t}) = \max_{c_{t}, a_{t}} u(c_{t}) + \beta \mathbb{E} \left[V_{t+1}^{A}(a_{t}; s_{t+1}) | s_{t} \right]$$

$$V_{t}^{I}(a_{t-1}; s_{t}) = \max_{c_{t}, a_{t}} u(c_{t}) + \beta \mathbb{E} \left[V^{SS}(a_{t}; s_{t+1}) | s_{t} \right]$$

- Twist: assume *current* aggregates r_t , y_t always observed
- Achieves three goals:
 - 1. agents never violate borrowing constraint
 - 2. (i)MPCs are unchanged \rightarrow matches "micro jumps"
 - 3. beliefs about future path of aggregates sluggish \rightarrow matches "macro humps"

Inattentive HA model

- Households:
 - idiosyncratic shocks to skills e_{it}
 - save in liquid and illiquid account
 - pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$

- Households:
 - idiosyncratic shocks to skills e_{it}
 - save in liquid and illiquid account
 - pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$
- Monetary and fiscal policy:
 - fixed G, long-term gov. debt B_t
 - fiscal policy sets labor tax $au_t = au^{ss} + \psi(B_t B^{ss})/y^{ss}$
 - ullet monetary policy sets real rate r_t

- Households:
 - idiosyncratic shocks to skills e_{it}
 - save in liquid and illiquid account
 - pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$
- Monetary and fiscal policy:
 - fixed G, long-term gov. debt B_t
 - fiscal policy sets labor tax $\tau_{\rm t} = au^{\rm ss} + \psi (B_{\rm t} B^{\rm ss})/y^{\rm ss}$
 - monetary policy sets real rate r_t
- Supply side:
 - production function $Y_t = K_t^{\alpha} N_t^{1-\alpha}$, K adjustment costs
 - sticky prices $P \longrightarrow \pi_t^p = \kappa^p m c_t + \frac{1}{1+r} \pi_{t+1}^p$
 - sticky wages $W \longrightarrow \pi_t^W = \kappa^W \int N_t(v'(n_{it}) \frac{\epsilon 1}{\epsilon} \frac{\partial z_{it}}{\partial n_{it}} u'(c_{it})) di + \beta \pi_{t+1}^W$

- Households:
 - idiosyncratic shocks to skills e_{it}
 - save in liquid and illiquid account
 - pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$ $n_{it} = N_t$
- Monetary and fiscal policy:
 - fixed G. long-term gov. debt B_t
 - fiscal policy sets labor tax $\tau_t = \tau^{ss} + \psi(B_t B^{ss})/y^{ss}$
 - monetary policy sets real rate r_t
- Supply side:
 - production function $Y_t = K_t^{\alpha} N_t^{1-\alpha}$, K adjustment costs
 - sticky prices $P \longrightarrow \pi_t^p = \kappa^p m c_t + \frac{1}{1+r} \pi_{t+1}^p$
 - sticky wages $V \longrightarrow \pi_t^r = \kappa^{\nu} m c_t + \frac{1}{1+r} \pi_{t+1}^{\nu}$ sticky wages $W \longrightarrow \pi_t^W = \kappa^W \int N_t (V'(n_{it}) \frac{\epsilon 1}{\epsilon} \frac{\partial z_{it}}{\partial n_{it}} u'(c_{it})) di + \beta \pi_{t+1}^W$

unions allocate

labor

Households:

- idiosyncratic shocks to skills e_{it}
- save in liquid and illiquid account
- pre-tax income $v_{it} \equiv W_t/P_t e_{it} n_{it}$

liquid: bonds

illiauid: bonds + capital (priced by attentive traders)

today: same illig. account for all. annuity value as transfer

Monetary and fiscal policy:

- fixed G. long-term gov. debt B_t
- fiscal policy sets labor tax $\tau_t = \tau^{ss} + \psi(B_t B^{ss})/y^{ss}$
- monetary policy sets real rate r_t

unions allocate

labor

• Supply side:

- production function $Y_t = K_t^{\alpha} N_t^{1-\alpha}$, K adjustment costs
- sticky prices $P \longrightarrow \pi_t^p = \kappa^p m c_t + \frac{1}{1+r} \pi_{t+1}^p$
- sticky wages $W \longrightarrow \pi_t^W = \kappa^W \int N_t(v'(n_{it}) \frac{\epsilon 1}{\epsilon} \frac{\partial Z_{it}}{\partial n_i} u'(c_{it})) di + \beta \pi_{t+1}^W$

 $n_{it} = N_t$

- Households: o inattentive with persistence $heta^h$
 - idiosyncratic shocks to skills e_{it}
 - save in liquid and illiquid account
 - pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$ $n_{it} = N_t$

liquid: bonds

illiquid: bonds + capital (priced by **attentive** traders)

today: same illiq. account for all, annuity value as transfer

- Monetary and fiscal policy:
 - fixed G, long-term gov. debt B_t
 - fiscal policy sets labor tax $au_t = au^{ss} + \psi(B_t B^{ss})/y^{ss}$
 - monetary policy sets real rate r_t
- Supply side: \rightarrow inattentive with persistence θ^f
 - production function $Y_t = K_t^{\alpha} N_t^{1-\alpha}$, K adjustment costs
 - sticky prices $P \longrightarrow \pi_t^p = \kappa^p m c_t + \frac{1}{1+r} \pi_{t+1}^p$
 - sticky wages $W \longrightarrow \pi_t^W = \kappa^W \int N_t(v'(n_{it}) \frac{\epsilon 1}{\epsilon} \frac{\partial z_{it}}{\partial n_{it}} u'(c_{it})) di + \beta \pi_{t+1}^W$

unions allocate

labor

Estimation

Two-step estimation procedure

- Two types of parameters
 - 1. steady-state relevant parameters \rightarrow calibrated to micro moments, e.g. **MPCs**
 - 2. impulse-response relevant parameters $\theta^h, \theta^f, \kappa^p, \kappa^w, r_o, \rho_r \to \textbf{estimated}$

Two-step estimation procedure

- Two types of parameters
 - 1. steady-state relevant parameters \rightarrow calibrated to micro moments, e.g. **MPCs**
 - 2. impulse-response relevant parameters $\theta^h, \theta^f, \kappa^p, \kappa^w, r_o, \rho_r \to \textbf{estimated}$
- Estimation to impulse responses to monetary policy shocks
 - data on $\{Y_t, C_t, I_t, N_t, P_t, w_t, r_t\}$

Impulse response to monetary policy shock

- Monetary impulse response [Ramey 2016]
- Jordà method using Romer-Romer dates on original sample (69m3–96m12)

- Simulating HA models remains challenging
- Use new "sequence space" methodology [Auclert-Rognlie-Straub 2019]

- Simulating HA models remains challenging
- Use new "sequence space" methodology [Auclert-Rognlie-Straub 2019]
- Idea: reduce model to system of equations, entirely in aggregates

$$F_t(\{X_s,Z_s\})=o$$

- {Z_s} is **sequence** of **shocks**
- $\{X_s\}$ is **sequence** of **aggregates** to solve

- Simulating HA models remains challenging
- Use new "sequence space" methodology [Auclert-Rognlie-Straub 2019]
- Idea: reduce model to system of equations, entirely in aggregates

$$F_t\left(\{X_s,Z_s\}\right)=o$$

- {Z_s} is **sequence** of **shocks**
- $\{X_s\}$ is **sequence** of **aggregates** to solve
- \rightarrow Impulse response is $d\mathbf{X} = \mathbf{F}_{\mathbf{X}}^{-1} \mathbf{F}_{\mathbf{Z}} d\mathbf{Z}$
- Methods efficiently compute Jacobian F_X

- Simulating HA models remains **challenging**
- Use new "sequence space" methodology [Auclert-Rognlie-Straub 2019]
- Idea: reduce model to system of equations, entirely in aggregates

$$F_t\left(\{X_s,Z_s\}\right)=o$$

- {Z_s} is **sequence** of **shocks**
- $\bullet \ \{X_s\}$ is sequence of aggregates to solve
- \rightarrow Impulse response is $d\mathbf{X} = \mathbf{F}_{\mathbf{X}}^{-1} \mathbf{F}_{\mathbf{Z}} d\mathbf{Z}$
 - ullet Methods efficiently compute Jacobian ${f F}_{{f X}}$

How fast are these methods?

[just transitions, not steady state]

- Simulating HA models remains **challenging**
- Use new "**sequence space**" methodology [Auclert-Rognlie-Straub 2019]
- Idea: reduce model to system of equations, entirely in aggregates

$$F_t(\{X_s,Z_s\})=o$$

- $\{Z_s\}$ is sequence of shocks
- $\{X_s\}$ is **sequence** of **aggregates** to solve
- \rightarrow Impulse response is $d\mathbf{X} = \mathbf{F}_{\mathbf{X}}^{-1} \mathbf{F}_{\mathbf{Z}} d\mathbf{Z}$
 - ullet Methods efficiently compute Jacobian $oldsymbol{F_X}$

How fast are these methods?

[just transitions, not steady state]

- Simulating HA models remains **challenging**
- Use new "sequence space" methodology [Auclert-Rognlie-Straub 2019]
- Idea: reduce model to system of equations, entirely in aggregates

$$F_t(\{X_s,Z_s\})=o$$

- $\{Z_s\}$ is sequence of shocks
- $\{X_s\}$ is **sequence** of **aggregates** to solve
- \rightarrow Impulse response is $d\mathbf{X} = \mathbf{F}_{\mathbf{X}}^{-1} \mathbf{F}_{\mathbf{Z}} d\mathbf{Z}$
 - ullet Methods efficiently compute Jacobian $oldsymbol{F_X}$

How fast are these methods?

[just transitions, not steady state]

The estimated impulse responses

Calibrated and estimated parameters: significant inattention!

Estimated parameters

Parameter		Value	std. dev.
$ heta^{h}$	Household inattention	0.911	(0.022)
$ heta^f$	Firm inattention	0.959	(0.008)
κ^p	Price Phillips Curve slope	1.000	(1.256)
$\kappa^{\sf w}$	Wage Phillips Curve slope	0.010	(0.002)
$r_{\rm o}$	Intercept of real rate	-0.118	(0.013)
$ ho_{r}$	Persistence of real rate	0.833	(0.012)

Why does inattention generate humps?

Not obvious that inattention \Rightarrow humps in model with high MPCs ...

- e.g. if Y is not hump-shaped, neither is C!
- \rightarrow requires **joint inattention** on both *C* and *I* [\neq habits, *I*-adj. costs]

How much does inattention matter for quantities?

• **Joint** inattention on *C* and *I* is crucial for the hump shape!

Decompose [Auclert 2019, Kaplan-Moll-Violante 2018, ...]

$$dC_{t} = \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial r_{s}} dr_{s}}_{\text{direct}} + \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial Y_{s}} dY_{s} + \dots}_{\text{indirect}}$$

Decompose [Auclert 2019, Kaplan-Moll-Violante 2018, ...]

$$dC_{t} = \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial r_{s}} dr_{s}}_{\text{direct}} + \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial Y_{s}} dY_{s} + \dots}_{\text{indirect}}$$

Indirect effects largely driven by MPCs

 \rightarrow mostly unaffected by inattention!

Decompose [Auclert 2019, Kaplan-Moll-Violante 2018, ...]

$$dC_{t} = \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial r_{s}} dr_{s}}_{\text{direct}} + \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial Y_{s}} dY_{s} + \dots}_{\text{indirect}}$$

Indirect effects largely driven by MPCs

 \rightarrow mostly unaffected by inattention!

Direct effects strongly dampened by inattention

Decompose [Auclert 2019, Kaplan-Moll-Violante 2018, ...]

$$dC_{t} = \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial r_{s}} dr_{s}}_{\text{direct}} + \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial Y_{s}} dY_{s} + \dots}_{\text{indirect}}$$

Indirect effects largely driven by MPCs

 \rightarrow mostly unaffected by inattention!

Direct effects strongly dampened by inattention

Decompose [Auclert 2019, Kaplan-Moll-Violante 2018, ...]

$$dC_{t} = \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial r_{s}} dr_{s}}_{\text{direct}} + \underbrace{\sum_{s} \frac{\partial C_{t}}{\partial Y_{s}} dY_{s} + \dots}_{\text{indirect}}$$

Indirect effects largely driven by MPCs

 \rightarrow mostly unaffected by inattention!

Direct effects strongly dampened by inattention

Inattention informs direct & indirect effects

Result 1: Investment is the

transmission mechanism

Three direct channels

Three direct channels & many indirect channels

The role of investment in the transmission mechanism

Switching off investment entirely...

...dampens HA output by 90% and consumption by 87%!

The role of investment in the transmission mechanism

Switching off investment entirely...

...but has no effect on RA consumption!

Investment is the transmission mechanism in HA

In RA, C only depends on r!

Representative agent

Heterogeneous agents

Investment is the transmission mechanism in HA

Make this precise by evaluating direct channels separately

Representative agent

Heterogeneous agents

Investment is the transmission mechanism in HA

Make this precise by evaluating direct channels separately

GE response in HA dominated by investment!

Why does it matter that investment transmits monetary policy?

- Causes state dependence!
- Suppose economy undergoes boom-bust cycle in investment
- During bust, investment may be low **but also unresponsive**

Why does it matter that investment transmits monetary policy?

- Causes state dependence!
- Suppose economy undergoes boom-bust cycle in investment
- During bust, investment may be low **but also unresponsive**
- \rightarrow In **HA:** monetary policy **pushes on a string** during the bust!
 - Corollary: natural interest rate plunges

Result 2: Investment drives business

cycles

Bayesian estimation of our inattentive HA model

- Enrich our model to include **7 standard shocks** [Smets Wouters 2007]
 - supply: TFP, W markup, P markup
 - demand: monetary policy, G_t , C_t (discount factor), I_t (user cost)
- Use same model parameters ...
- ... but estimate all shock parameters to 7 standard series
- To compare: Apply same procedure to RA with habit

Estimates for HA model

			Posterior					Posterior	
Supply shock		Prior distribution	Mode	std. dev	Demand shock		Prior distribution	Mode	std. dev
TFP	s.d.	Invgamma(0.1, 2)	0.319	(0.017)	Mon. policy	s.d.	Invgamma(0.1, 2)	0.382	(0.021)
	AR-1	Beta(0.5, 0.2)	0.097	(0.052)		AR-1	Beta(0.5, 0.2)	0.756	(0.038)
	AR-2	Beta(0.5, 0.2)	0.961	(0.016)	G shock	s.d.	Invgamma(0.1, 2)	0.371	(0.020)
W markup	s.d.	Invgamma(0.1, 2)	0.241	(0.014)		AR-1	Beta(0.5, 0.2)	0.950	(0.017)
	AR-1	Beta(0.5, 0.2)	0.774	(0.030)	C shock	s.d.	Invgamma(0.1, 2)	3.417	(0.291)
	AR-2	Beta(0.5, 0.2)	0.028	(0.022)		AR-1	Beta(0.5, 0.2)	0.765	(0.026)
P markup	s.d.	Invgamma(0.1, 2)	0.706	(0.041)	l shock	s.d.	Invgamma(0.1, 2)	3.952	(0.347)
	AR-1	Beta(0.5, 0.2)	0.773	(0.125)		AR-1	Beta(0.5, 0.2)	0.645	(0.030)
	AR-2	Beta(0.5, 0.2)	0.476	(0.162)					

 $[\mathsf{AR}(1) : x_t = \rho x_{t-1} + \epsilon_t. \mathsf{AR}(2) : x_t - \rho_2 x_{t-1} = \rho_1 \left(x_{t-1} - \rho_2 x_{t-2} \right) + \epsilon_t. \mathsf{std} \; \mathsf{errors} \; \mathsf{from} \; \mathsf{Laplace} \; \mathsf{approximation} \; \mathsf{around} \; \mathsf{posterior} \; \mathsf{mode} \; \mathsf{log} \; \mathsf{l$

In RA, it's (almost) all about markup shocks

Decompose forecast error variances at business cycle horizons
 [Smets Wouters 2007 find 50% accounted for by markup shocks after 40 quarters]

Estimated RA: It's all about markup shocks!

23

In HA, it's about investment shocks

Decompose forecast error variances at business cycle horizons
 [Smets Wouters 2007: 50% accounted for by markup shocks after 40 quarters]

Estimated **HA**: replaces markup shocks with **investment shocks**!

Why is this?

- Salient feature of the data: **comovement** of Y, C, I, N
- ullet What generates this comovement in the two models? o e.g. $\mathsf{Cov}_t(\mathcal{C}_{t+h}, I_{t+h})$

Why is this?

- Salient feature of the data: **comovement** of *Y*, *C*, *I*, *N*
- What generates this comovement in the two models? \rightarrow e.g. $Cov_t(C_{t+h}, I_{t+h})$

Estimated **HA** generates **endogenous** comovement between *C* and *I*

This is key to diagnose the drivers of business cycles

- Estimated RA: important role of markup shocks for business cycles
- Estimated **HA**: much larger role for **investment shocks**!

Conclusion

Conclusion

Jordà method using Romer-Romer shocks as instruments

- Obtain monthly time series of Romer-Romer shocks $\{\epsilon_t\}$ (69m3–96m12)
- For each outcome Y, run at monthly level

$$Y_{t+h} = \theta_{Yh}\epsilon_t + X_t + \eta_t$$

then aggregate θ_{Yh} to quarterly

- Outcomes: logs of
 - Y, C, I: real chained GDP, PCE, Investment
 - n : Hours of all persons in nonfarm business sector
 - p : CPI-all items
 - w : avg hourly earnings of private employees/CPI
 - i : Federal Funds rate
 - r = i everage one-year-ahead inflation forecast from the SPF
- Controls: lags of Y + lags of IP, unemployment, CPI, Commodity Price Index

Our estimated HA model

Estimated impulse responses to investment shocks

• Impulse responses to 1-s.d. investment shock in RA and HA

• Impulse responses to 1-s.d. investment shock in RA and HA

• Impulse responses to 1-s.d. investment shock in RA and HA

- Investment shocks much more powerful in HA than in RA
- We should be especially wary of investment shocks!
 - ... even more so since those may constrain monetary policy!

The forward guidance puzzle in our estimated HA model

- In standard RA and HA models: forward guidance puzzlingly powerful [McKay-Nakamura-Steinsson, Giannoni-Del-Negro-Patterson, Werning]
- What about our HA model with investment?

The forward guidance puzzle in our estimated HA model

- In standard RA and HA models: forward guidance puzzlingly powerful [McKay-Nakamura-Steinsson, Giannoni-Del-Negro-Patterson, Werning]
- What about our HA model with investment?

Without inattention

HA + investment amplify the puzzle!

The forward guidance puzzle in our estimated HA model

- In standard RA and HA models: forward guidance puzzlingly powerful [McKay-Nakamura-Steinsson, Giannoni-Del-Negro-Patterson, Werning]
- What about our HA model with investment?

Without inattention

HA + investment amplify the puzzle!

With inattentionBut inattention solves the puzzle

- Our estimated HA model is highly **non-Ricardian** [unlike RA] [Auclert-Rognlie-Straub 2018, Hagedorn-Manovskii-Mitman 2019]
- Fiscal response matters, but less than with short-term bonds

Quantitative Easing

- QE effective in the model if it swaps illiquid to liquid assets
 - not clear it does ... denote $\chi =$ share of illiquid assets converted
- Simulate QE3: \$180bn for 2 years, then taper with half-life of 2 years

