Discussion of "Short-Term Forecasting of Business Cycle Turning Points: a Mixed-Frequency Markov-Switching Dynamic Factor Analysis"

by Siem Jan Koopman and Matías Pacce

Jonas Dovern
Heidelberg University/RWTH Aachen University

9th ECB Workshop on Forecasting Techniques
June 3, 2016

What Are the Paper's Contributions?

- Enriching the "stacked" approach for mixed frequency models by Blasques et al. (2014) with a Markov switching feature.
- Demonstration of how the obtained model can be estimated by Bayesian methods.
- Evaluation of MF-DFMS model in terms of ...
 - its ability to identify U.S. recessions and expansions in-sample;
 - its ability to anticipate business cycle turning points in real-time;
 - its ability to make good nowcasts for real GDP growth.

The MF-DFMS Model vs. Other Models

What I Am Going to Talk about

- Summary of the MF-DFMS model.
- Timing vs. strength of signals.
- Benchmarks for comparing GDP growth forecasts.
- Minor issues.

Summary of Model Features

- Key idea taken from Blasques et al. (2014): switch from monthly to quarterly frequency.
- Model is given by

$$\begin{bmatrix} y_t \\ x_t^q \end{bmatrix} = \begin{bmatrix} \beta_y & \beta_y & \beta_y \\ \beta_x & 0 & 0 \\ 0 & \beta_x & 0 \\ 0 & 0 & \beta_x \end{bmatrix} f_t^q + \varepsilon_t$$

$$f_t^q = M_{s_t} + \begin{bmatrix} 0 & 0 & \phi_f \\ 0 & 0 & \phi_f^2 \\ 0 & 0 & \phi_f^3 \end{bmatrix} f_{t-1}^q + \xi_t$$

with
$$x_t^q = [x_{t,1}^q \ x_{t,2}^q \ x_{t,3}^q]'$$
 and $f_t^q = [f_{t,1}^q \ f_{t,2}^q \ f_{t,3}^q]'$.

• M_{s_t} takes care of the regime-switching means.

Timing vs. Strength of Signals

- Paper focuses very strongly on the following two timing issues:
 - Ability to match exactly the NBER dating.
 - ▶ Ability to generate early signals about turning points in real-time.
 - ⇒ Not many differences across the models that are considered in the paper.
- Not explicitly discussed: clearness/strength of signals.
- Both timing and the strength of signals are important for policy makers!

Timing vs. Strength of Signals

Evaluating Models Based on Their QPSs

The quadratic probability score (QPS) is computes as follows:

$$QPS = 1/T \sum_{t=1}^{T} (f_t - x_t)^2,$$

where f_t denotes a probability forecast and x_t is the realization of the event.

- Based on the predictive probabilities in Fig. 3, I obtain values of 0.058 for both the MF-DFMS and the DFMS model for the full sample.
- Looking only at recessions, I obtain values of 0.29 for the MF-DFMS model and 0.33 for the DEMS model.
- Looking only at expansions, I obtain values of 0.022 for the MF-DFMS model and 0.016 for the DFMS model.

Timing vs. Strength of Signals

Receiver Operating Characteristic (ROC)

- Are recessions rare events? \Rightarrow look, e.g., at ROC instead of QPS.
- Idea: compare "hit rate" and "false alarm rate" for different thresholds.
 - ▶ Note the difference to "complex" threshold used in paper.
 - Authors could show robustness of results with respect to different decision rules.

Benchmarks for Comparing GDP Growth Forecasts

- Paper presents only assessment vs. an AR(2) model.
 - What about tougher benchmarks?
- Add information about difference between MF-DFMS and AR(2)-DFMS.
 - ▶ Look at AR(2)-DFMS also for month 1 and 2.
 - ► AR(2)-DFMS model based on unbalanced panel approach?

• Maybe also look at h=2, 3, and 4?

Minor Issues/Questions

- Reversing the two parts of the paper title?
- Two different notations used in the paper (Section 2.2.1 vs. Section 2.2.2).
- Could you make the loading coefficients regime-dependent?
 Identification problem?
- First argument against ML estimation ("inference") not really important in the context of this forecasting paper.
- How do you demean in the real-time out-of-sample analysis? No explicit information given in paper.
- Maybe add table with overview about the timing of the publication process.
- Explicit explanation for why you refer to smoothed probabilities in Fig. 3?