ECB Workshop on Forecasting Techniques

"Understanding the Sources of Macroeconomic Uncertainty" by Rossi, Sekhposyan and Soupre

Discussion by Michel van der Wel and Didier Nibbering

Erasmus U Rotterdam, CREATES Aarhus, Tinbergen Institute, ERIM

June 4, 2016

Paper Summary

- A lot of interest in measuring uncertainty
- Paper proposes uncertainty measure based on forecast densities
- Furthermore, provides two decompositions:
 - Knightian uncertainty and risk
 - Ex-ante and ex-post uncertainty
- Applies measure to SPF densities, for GDP (main) and Inflation
- Provides relation with macroeconomic effects and studies measure through the lens of a model

1. Relation with CRPS

- In forecast evaluation literature, Continuous Rank Probability Score (CRPS) often used
- Measures difference between forecasted distribution and realization
- CRPS definition (Hersbach, 2000):

$$CRPS = \int_{-\infty}^{\infty} \left[P(x) - P_a(x) \right]^2 dx,$$

with

P(x) cdf of forecast distribution

 $P_a(x)$ cdf of realization (with actual value x_a); 1 if $x \ge x_a$, 0 else

Example CRPS

CRPS and New Uncertainty Index

■ Index proposed in paper:

$$U_{t+h|t} = \int_{-\infty}^{\infty} E\left[\left(x_{t+h}(r) - p_{t+h|t}(r)\right)^{2}\right] dr$$

based on (2), plugging in (1) with N = 1, with $x_{t+h}(r)$ cdf of actual [like $P_a(x)(?)$] and $p_{t+h|t}(r)$ probability forecast of $x_{t+h}(r) = 1$ [like P(x)(?)]

■ Compared again to CRPS:

$$CRPS = \int_{-\infty}^{\infty} \left[P(x) - P_a(x) \right]^2 dx$$

■ What is precise relationship between measures?

2. Decompositions

- For first decomposition need/use
 - $Cov(x_{t+h}(r)p_{t+h|t}(r)) \approx 0$, to decompose Aggregate Uncertainty in Mean-Bias, Dispersion and (Realized) Risk
 - $V_{t+h|t} \approx 0$, this is Dispersion / variability in predictive density Both cases point out "empirically small"
 - → How small empirically?
 - \rightarrow Small here or always?
 - → Under what conditions?
 - → What are implications?
- Second decomposition on ex-ante / ex-post under Gaussianity
 - → Study consequences of deviations in density?

3. Deeper takeaways

- Possible to get further implications of using different indices?
- Now studied through VAR with macros and find 'differences'
- How do we know whether one index is truly 'better'?
- Are there other/deeper takeaways of the measure and decompositions?

4. Model of ambiguity

- Follows Ilut and Schneider (2014)
 - → Study ambiguity about TFP
- In this application same setting used for ambiguity about GDP growth, with for GDP

$$Z_{t+1} = \rho_z Z_t + \mu_t^* + u_{t+1},$$

while agent *i* beliefs about GDP are based on

$$Z_{i,t+1} = \rho_z Z_{i,t} + \mu_{i,t} + u_{t+1}$$

- Plausible to take GDP as hard to measure as TFP?
- What if at time t (or t + 1) actual Z_t is observed?

Smaller points and conclusion

Smaller points:

- Timing of surveys varies over time
 - → Causes difference in measure and decompositions?
- 2 Fixed event interpolation
 - → Assumes flat growth over year?
 - \rightarrow For robustness try annual data?

In conclusion:

- Very insightful decomposition
- Great work!

ECB Workshop on Forecasting Techniques

"Understanding the Sources of Macroeconomic Uncertainty" by Rossi, Sekhposyan and Soupre

Discussion by Michel van der Wel and Didier Nibbering

Erasmus U Rotterdam, CREATES Aarhus, Tinbergen Institute, ERIM

June 4, 2016

