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Abstract

In this paper we introduce a nonparametric estimation method for a large Vector Au-
toregression (VAR) with time-varying parameters. The estimators and their asymptotic
distributions are available in closed form. This makes the method computationally ef-
ficient and capable of handling information sets as large as those typically handled by
factor models and Factor Augmented VARs (FAVAR). When applied to the problem of
forecasting key macroeconomic variables, the method outperforms constant parameter
benchmarks and large Bayesian VARs with time-varying parameters. The tool can also
be used for structural analysis. As an example, we study the time-varying effects of oil
price innovations on sectoral U.S. industrial output. We find that the changing interaction
between unexpected oil price increases and business cycle fluctuations is shaped by the
durable materials sector, rather by the automotive sector on which a large part of the
literature has typically focused.
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1 Introduction

In recent years macro-econometric research has been particularly active on two fronts. First,
increasing availability of economic time series has prompted the development of methods ca-
pable of handling large dimensional datasets. Second a number of changes in the economic
landscape (a renewed stream of oil price shocks, the Great Recession, unconventional mone-
tary policy in most advanced countries) further stimulated work on models with time-varying
parameters.

On the large models front typical solutions include data reduction and parameter shrinkage.
Data reduction reduces the data space through linear combinations (factors) of the observed
variables. This parsimonious representation of the data typically yields benefits in terms of
estimation precision and forecasting. Shrinkage, on the other hand, constraints the parameter
space within values that are (a priori) plausible. It therefore reduces estimation uncertainty,
providing an alternative solution to the over-fitting problem. In the context of large Vector
Autoregressions (VARs), for example, Banbura, Giannone, and Reichlin (2010) show that
progressively tightening shrinkage as the cross-sectional dimension of the VAR increases, results
in more accurate forecasts than those obtained on the basis of unrestricted VARs. Despite
different premises, data reduction and shrinkage go in the same direction since, as shown by
De Mol, Giannone, and Reichlin (2008), both methods stabilize OLS estimation by regularising
the covariance matrix of the regressors.

Turning to time-varying parameters (TVP) models, a prolific line of research has grown in
the Bayesian context, starting from the seminal work on VARs with time-varying coefficients
and variances by Cogley and Sargent (2005) and Primiceri (2005). The estimation procedure
of these models rests on the assumption that the VAR coefficients follow a random walk (or
autoregressive) plus noise process. The assumed law of motion for the model parameters,
coupled with the VAR equations, form a State Space system. Given the presence of time-
varying second moments, a combination of Kalman filtering and Metropolis Hasting sampling
is then used to deal with such models. The need to use the Kalman filter, however, limits
the scale of the models, so that the numerous empirical applications that have followed this
approach usually model a relatively small number of time series, see for example Benati and
Surico (2008), Canova and Gambetti (2010) and Benati and Mumtaz (2007). Furthermore, in
settings where the nature of the structural change is uncertain, methods based on simple data
discounting could be more robust than Kalman filter based models.

These motivations are behind a stream of papers that in recent years have explored the
performance of non parametric estimation methods for TVP-models. The viewpoint of this line
of research is that the nature of time variation in the co-movement across time series is itself
evolving, i.e. large infrequent breaks could coexist with periods of slow gradual time variation.
Given this complexity, adaptive methods can deliver good forecasts and an accurate description
of the structural relationships among macroeconomic variables at a relatively low computational
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cost.1 In this framework Giraitis, Kapetanios, and Yates (2014) and Giraitis, Kapetanios,
and Yates (2012) have developed non-parametric estimators for univariate and multivariate
dynamic models. They show that, for a wide class of models in which the coefficients evolve
stochastically over time, the path of the parameters can be consistently estimated by suitably
discounting distant data and provide details on how to choose the degree of such discounting.
Furthermore, being available in closed form, the estimator proposed by Giraitis, Kapetanios,
and Yates (2012) in the context of VARs partly addresses the curse of dimensionality, as systems
of seven variables are easily handled, see Giraitis, Kapetanios, Theodoridis, and Yates (2014).

The paths traced by the large model literature and by the TVP model literature have
seldom crossed. Connections have been established for Factor Augmented VAR (FAVAR)
models, see for example Eickmeier, Lemke, and Marcellino (2015) and Mumtaz and Surico
(2012), while they are still scant in the VAR literature. A notable exception is represented
by the paper by Koop and Korobilis (2013) where the restricted Kalman filter by Raftery,
Karny, and Ettler (2010) is used to make a TVP-VAR suitable for large information sets.
This approach, while solving some issues, presents some shortcomings. First, the curse of
dimensionality is only partially addressed since the parametric nature of the model implicitly
limits its size. In practice, this framework cannot handle the large information sets employed
in factor models (or FAVARs) or the large number of lags that are used when fitting medium-
size VARs to monthly data like in Banbura, Giannone, and Reichlin (2010). Second, if the
true data generating process is different from the postulated random walk type variation, the
robustness of the Kalman filter to model misspecification is an obvious concern.

In this paper we propose an estimator that addresses, in a nonparametric context, both of
these problems. Our idea is to start from the nonparametric estimator proposed by Giraitis,
Kapetanios and Yates (2012), and adapt it to handle large information sets. To solve the
issue of over fitting that arises when the size of the VAR increases, we recur to the mixed
estimator by Theil and Goldberger (1960), which imposes stochastic constraints on the model
coefficients, therefore mimicking in a classical context the role of the prior in Bayesian models.
The resulting estimator, for which we derive asymptotic properties, mixes sample and non
sample information to shrink the model parameters. It can be seen both as a generalization to a
time-varying parameter structure of the model by Banbura, Giannone, and Reichlin (2010) and
as a penalized regression version of the estimator by Giraitis, Kapetanios and Yates (2012). The
proposed method is, given its nonparametric nature, robust to changes in the underlying data
generating process and for popular shrinkage methods delivers equation by equation estimation.
This implies that the estimator can cope with systems as large as those analyzed in the FAVAR
and factor model literature.

Our estimator depends crucially on two parameters, the tuning constant that regulates the
width of the kernel window used to discount past data, and the penalty parameter that deter-

1A crucial issue in this framework is how to select the degree of data discounting. The problem is addressed
by Giraitis, Kapetanios, and Price (2013), who show how to make this choice data dependent using cross-
validation methods.
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mines the severity of the constraints imposed to control over fitting, akin to the prior tightness
in Bayesian estimators. In the paper we explore a variety of cross-validation techniques to set
these two parameters based on past model performance.2 We also consider model averaging as
an alternative strategy to deal with model uncertainty.

We next assess in Monte Carlo experiments the finite sample performance of our estimator,
which turns out to be good, and compare it with the parametric estimator for TVP-VARs
proposed by Koop and Korobilis (2013). We find that when the data generating process
matches exactly the one assumed in the parametric setup, the two estimators give broadly
similar results. Yet, as we move away from this assumption, the performance of the parametric
estimator deteriorates, while our non-parametric estimator proves quite robust to changes in
the underlying data generating process.

After discussing the theoretical and finite sample properties of the non-parametric estima-
tors, we examine their use through a number of applications. First, we explore whether time
variation is indeed a necessary feature of the model to successfully forecast key macroeconomic
variables using a large panel (up to 78 variables) of U.S. monthly time series. We organize
the forecast exercise around three questions that have been central to the forecasting literature
in recent years. The first one is whether time variation actually improves forecast accuracy.
The second one is whether the performance of medium-sized VARs with time-varying param-
eters can be approximated by that of large VARs with constant coefficients. This question is
motivated by the contrasting findings in Stock and Watson (2012), who find little evidence of
parameter changes during the financial crisis in the context of a factor model, and those re-
ported by Aastveit, Carriero, Clark, and Marcellino (2014), who provide substantial evidence
of parameter changes in smaller dimensional VARs. This conflicting evidence suggests that
parameter time variation can be due, at least partly, to omitted variables, so that enlarging
the information set makes parameters’ time variation unnecessary. Once we have established
that time variation is indeed beneficial to forecast accuracy the third question is whether it
pays off to go beyond a medium size system, i.e. if going from a 20 to a 78 TVP-VAR improves
forecast accuracy for the small set of key variables that we are interested in.

The analysis indicates that the introduction of time variation in the model parameters yields
an improvement in prediction accuracy over models with constant coefficients, in particular
when forecast combination is used to pool forecasts obtained with models with different degrees
of time variation and shrinkage. Our findings also indicate that, especially at longer horizons,
medium-sized TVP-VARs perform better than a VAR with constant parameters that uses a
large information set. Finally, we find that, in the context of TVP-VARs, going beyond 20
variables is not beneficial to forecast accuracy, in line with the results for the constant parameter
case in studies such as Banbura, Giannone, and Reichlin (2010) and Koop (2013).

2The use of data discounting in regression models as a way to handle structural breaks is the focus of a
large literature, see in particular Pesaran and Timmermann (2007), Pesaran and Pick (2011), and Rossi, Inoue,
and Jin (2014). All these papers, however, are concerned with single equation regressions rather than with
large models.
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Our non-parametric large TVP-VAR is also useful for structural analysis. As an illustration
we revisit, in the context of a large information set, the issue of the diminished effects of oil
price shocks on economic activity, a question that has spurred a large number of studies in
the applied macro literature in recent years, see for example Hooker (1999), Edelstein and
Kilian (2009), Hamilton (2009), Blanchard and Gali (2007), Blanchard and Riggi (2013) and
Baumeister and Peersman (2013). The use of a large information set allows us to take a more
granular view, allowing us to uncover some interesting findings on the evolving impact of oil
price innovations on the output of different sectors of the U.S. industry. Specifically, we find
that the declining role of oil prices in shaping U.S. business cycle fluctuations stems from lower
effects on the production of durable materials, rather than on the automotive sector on which
part of the literature has traditionally focused.

The paper is structured as follows. In Section 2 we describe the estimation method and
derive its theoretical properties. In Section 3, we discuss cross-validation and model averaging.
In Section 4 we assess the finite sample properties of our nonparametric method in Monte
Carlo experiments and compare it with available parametric methods. In Section 5 we present
the main forecasting exercise. In Section 6 we present an analysis of the time-varying impact
of unexpected increases in the price of oil on U.S. industrial production. In Section 7 we
summarize our main findings and conclude. Additional details are provided in Appendixes.

2 Setup of the problem

Let us consider a p-order VAR with n variables and time-varying (stochastic) coefficients:

y′t
1×n

= x′tΘt + u′t
1×n

, t = 1, ..., T (1)

x′t
1×k

= [y′t−1, y
′
t−2,...,y

′
t−p, 1]

Θt
k×n

= [Θ′t,1,Θ
′

t,2, ...,Θ
′
t,p, A

′
t]
′

where k = (np + 1) is the number of random coefficients to be estimated in each equation so
that at each time t there are nk parameters to be estimated, collected in the matrix Θt. For
the time being, we assume that ut is a martingale difference process with finite variance Σn.3

A further crucial assumption is that Θt changes rather slowly, i.e., that:

sup
j≤h
‖Θt −Θt+j‖ = Op

(
h

t

)
. (2)

A number of classes of models satisfy (2). For example, one such model is obtained by
setting Θt = [θij,t], Θ̃t = [θ̃ij,t] and letting θ̃ij,t = θ̃ij,t−1 + εθ̃,ij,t and θij,t = θij

θ̃ij,t

max1≤i≤t θ̃ij,t
for

some bounded set of constants θij and some set of stochastic processes εθ̃,ij,t. This is an example

3The issue of heteroschedasticity is discussed in Section 2.5.
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of a bounbed random walk model. We can allow for a wide variety of processes, εθ̃,ij,t, making
this class suitably wide.

Applying the vec operator to both sides of (1) we obtain:

yt
n×1

= (In ⊗ x′t)
n×nk

βt
nk×1

+ ut
n×1

, (3)

where βt = vec(Θt). Assuming persistence and boundedness4 of the coefficients in Θt, Giraitis,
Kapetanios, and Yates (2012, henceforth GKY) show that the path of the random coefficients
is consistently estimated by the following kernel estimator:

βGKYt =

[
In ⊗

T∑
j=1

wj,t(H)xjx
′
j

]−1 [ T∑
j=1

wj,t(H)vec
(
xjy

′
j

)]
, (4)

where the generic jth element wj,t(H) is a kernel, function with bandwidth H, used to discount
distant data. Throughout the paper we use a Gaussian kernel:5

wj,t(H) =
Kj,t(H)∑T
j=1Kj,t(H)

, (6)

Kj,t(H) = (1/
√

2π)exp

[
−1

2

(
j − t
H

)2
]
. (7)

One appealing feature of the estimator in (4) is that, given the Kronecker structure of the
first term, it only requires the inversion of the k × k matrices

∑T
j=1wj,txjx

′
j. In other words,

estimation can be performed equation by equation that, as emphasized by Carriero, Clark, and
Marcellino (2016) in a Bayesian context, substantially reduces the computing time.

A more compact notation is obtained by introducing the following notation: Xw,t = WH,tX,
where WH,t = diag(w

1/2
1t (H), ..., w

1/2
Tt (H)) and the T × k matrix X is formed by stacking over

t the vectors x′t. Also, let us define Xww,t = WH,tXw,t and denote with Y the T × n matrix
formed by stacking over t the vectors y′t. The GKY estimator can now be cast in the following
matrix form:

ΘGKY
t =

[
X ′w,tXw,t

]−1 [
X ′ww,tY

]
. (8)

4More specifically, writing the VAR in companion form as a VAR(1) model, Yt = ΨtYt−1, GKY assume
that the spectral norm (that is the maximum absolute eigenvalue) of Ψt is strictly lower than 1.

5When forecasting, in order to preserve the pseudo real time nature of the exercise, we introduce an indicator
function that assigns zero weight to the out of sample observations, so that only in sample information is used
to estimate the parameters:

Kj,t(H) = (1/
√

2π)exp

[
−1

2

(
j − t
H

)2
]
I(j ≤ t) (5)
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2.1 Shrinkage through stochastic constraints

When the dimension of the system grows, it is desirable to impose some shrinkage on the
model parameters to avoid an increase in the estimation variance (Hastie, Tibshirani, and
Friedman, 2003). While in a Bayesian framework this can be achieved through the prior
distribution, in a classical framework shrinkage can be performed by using the mixed estimator
of Theil and Goldberger (1960). This is obtained by adding a set of stochastic constraints
(i.e., constraints that hold with some degree of uncertainty) to model (3). The constraints are
written as linear combinations of the parameter vector βt plus a vector of noises, where the
latter ensures that the constraints do not hold exactly. The complete model can be written as:

yt
n×1

= (In ⊗ x′t)
n×nk

βt
nk×1

+ ut
n×1

(9)
√
λ r
nk×1

=
√
λ R
nk×nk

βt
nk×1

+ urt
nk×1

. (10)

We assume that the errors urt are a martingale difference process with finite variance and that
their variance is proportional to that of the data, that is var(urt ) = Ik ⊗ Σn. In other words,
when the noise in the dynamic relationship between yt and xt is high, uncertainty about the
constraints on the coefficients βt also increases. As for expected value of urt , for the moment we
leave it unspecified since it plays a crucial role in determining the bias of the estimator, as we
show further below. Notice that both sides of equation (10) are pre-multiplied by a constant√
λ. It is easy to see that this constant acts a scaling factor of the variance of the stochastic

constraints urt .6 Hence, low values of λ imply that the coefficient vector βt is left relatively
unrestricted; vice versa, high values of λ imply that the constraints in (10) hold relatively
more tightly. Regarding the structure of the matrix R, we consider two cases. In the first
case we assume that R has a Kronecker structure: R

nk×nk
= (In⊗ R

k×k
). This case is of particular

interest for two reasons. First, it holds for a number of popular shrinkage methods, like the
Ridge regression and the Litterman prior. Second, it results in an estimator that can be cast
in matrix form, hence being very efficient from a computational point of view and directly
comparable to its unconstrained counterpart, i.e. the GKY estimator. Next, we consider the
more general case where R does not have this particular structure.

2.2 Case 1: R has a Kronecker structure

If R has a Kronecker structure, the analysis of the estimator can proceed equation by
equation. First let us state the following definitions: urt

kn×1

= vec( urt
k×n

) and r
kn×1

= vec( r
k×n

). Also,

since R
nk×nk

= (In ⊗ R
k×k

) and βt = vec(Θt), it follows that Rβt = (In ⊗ R)vec(Θt) = vec(RΘt).

6Notice that, by multiplying both sides of (10) by 1√
λ
the variance of the noise in (10) becomes 1

λ (Ik⊗Σn).
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Hence the joint model in (9) and (10) can be expressed in matrix form as:

y′t
1×n

= x′t
1×k

Θt
k×n

+ u′t
1×n

, (11)
√
λ r
k×n

=
√
λ R
k×k

Θt
k×n

+ urt
k×n

, (12)

or more compactly:
y∗t

(k+1)×n
= x′∗j Θt + u∗t , (13)

where y∗t = [yt,
√
λr′]′, x′∗j = [xt,

√
λR
′
]′, u∗t = [ut, u

′r
t ]′, u∗∗t = [ut, 0]′ and var(vec(u∗t )) =

Ik+1 ⊗ Σn. The extended regression model in (13) can be analyzed using the GKY estimator,
with related properties. The estimator has the form:

Θ̂t
k×n

=

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
jy
∗
j

)
, (14)

where, for simplicity, we have omitted the dependence of wj,t from the bandwidthH. Separating
the contribution of the actual data from that of the constraints, the estimator can equivalently
be written as:7

Θ̂t
k×n

=

(
T∑
j=1

wj,txjx
′
j + λR

′
R

)−1( T∑
j=1

wj,txjy
′
j + λR

′
r

)
(15)

=
(
X ′w,tXw,t + λR

′
R
)−1 (

X ′ww,tY + λR
′
r
)
. (16)

It is worth making the following observations. First, when λ = 0 the constrained estimator
equals the unconstrained one: Θ̂t,GKY =

(
X ′w,tXw,t

)−1 (
X ′ww,tY

)
. Second, and vice versa, as λ

→∞, Θ̂t converges to the value implied by the constraints, that is Θt → ΘC = (R
′
R)−1(R

′
r).

Hence, the constant term
√
λ can also be interpreted as the weight of the sample size of the

artificial observations (r and R) relative to T , the sample size of the observed data yt and xt.
It is worth remarking that the value implied by the constraints (ΘC) is time invariant. This
means that the stochastic constraints anchor the evolution of Θt around a fixed value that
is specified ex ante. Third, Θ̂t can be expressed as the weighted sum of its unrestricted and
restricted versions, Θ̂t,GKY and ΘC . To see this point, re-write (16) as follows:

Θ̂t
k×n

=
(
X ′w,tXw,t + λR

′
R
)−1 [

(X ′w,tXw,t)Θ̂t,GKY + (λR
′
R)ΘC

]
(17)

= S−1
w (X ′w,tXw,t)Θ̂t,GKY + S−1

w (λR
′
R)ΘC , (18)

7Notice that
∑T
j=1 wj,tx

∗
jx
∗′
j =

∑T
j=1 wj,t

[
xt
√
λR
′
] [ x′t√

λR

]
and

∑T
j=1 wj,tx

∗
jy
∗
j =∑T

j=1 wj,t

[
xt
√
λR
′
] [ yt′√

λr

]
.

8



where Sw =
(
X ′w,tXw,t + λR

′
R
)
.

The properties of Θ̂t are derived in the following theorem.

Theorem 1 Let the model be given by (13) where ut is a martingale difference sequence with
finite fourth moments. Let (2) hold and H = o(T 1/2). Let X∗w,t = WH,tX

∗ where X∗ is
obtained by stacking over t the vectors x′∗t , X∗ww,t = WH,tX

∗
w,t, Γ∗w,t = p lim 1

H
X∗′w,tX

∗
w,t, Γ∗ww,t =

p lim 1
H
X∗′ww,tX

∗
ww,t. Then,

(
Γ∗−1
w,t Γ∗∗ww,tΓ

∗−1
w,t ⊗ Σn

)− 1
2
√
Hvec

(
Θ̂′t −Θ′t −Θ′Bt

)
→d N (0, I) , (19)

where ΘB
t = p limS−1

w

√
λR
′
urt = p limS−1

w λR
′ (
r −RΘt

)
and Γ∗∗ww,t is defined in (27).

Proof. Starting from (18), we have:

Θ̂t = (S−1
w X ′w,tXw,t)Θ̂t,GKY + S−1

w (λR
′
R)ΘC (20)

= (S−1
w X ′w,tXw,t)Θ̂t,GKY + S−1

w (λR
′
R)Θt + S−1

w

√
λR
′
urt (21)

where we have used the fact that

ΘC = (R
′
R)−1(R

′
r) (22)

= (R
′
R)−1

(
R
′
(
RΘt +

1√
λ
urt

))
(23)

= Θt + (R
′
R)−1R

′ 1√
λ
urt (24)

Taking probability limits, recalling that p lim Θ̂t,GKY = Θt, and that Sw = (X ′w,tXw,t + λR
′
R)

we have that:

p lim (S−1
w X ′w,tXw,t)Θ̂t,GKY + S−1

w (λR
′
R)Θt + S−1

w R
′
λurt = Θt + ΘB

t

To determine the normalising factor in (19), let us go back to the representation in (14)
and let us take differences from the true parameter matrix Θt and from the bias term ΘB

t . We
obtain:

Θ̂t −Θt −ΘB
t =

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
jy
∗
j

)
−Θt −ΘB

t

=

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
j(x
∗′
j Θj + u∗j)

)
−Θt −ΘB

t

=

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
jx
∗′
j Θj

)
+

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
ju
∗
j

)
−Θt −ΘB

t
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=

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1 T∑
j=1

wj,tx
∗
jx
∗′
j (Θj −Θt) +

+

(
T∑
j=1

wj,tx
∗
jx
∗′
j

)−1( T∑
j=1

wj,tx
∗
ju
∗
j −

T∑
j=1

wj,tx
∗
jx
∗′
j ΘB

t

)
.

Now, if the bandwidth is o(T 1/2), then the term
(∑T

j=1wj,tx
∗
jx
∗′
j

)−1∑T
j=1 wj,tx

∗
jx
∗′
j (Θj−Θt)

is asymptotically negligible and we can focus on the second element.
First let us simplify the notation and let us write:

• X∗′w,tX∗w,t︸ ︷︷ ︸
k×k

≡
∑T

j=1wjt x∗j︸︷︷︸
k×(k+1)

x∗
′

j︸︷︷︸
(k+1)×k︸ ︷︷ ︸

k×k

• X∗′ww,t︸ ︷︷ ︸
k×T (k+1)

U∗︸︷︷︸
T (k+1)×n︸ ︷︷ ︸

k×n

≡
∑T

j=1wj,t x∗j︸︷︷︸
k×(k+1)

u∗j︸︷︷︸
(k+1)×n︸ ︷︷ ︸

k×n

, where the T (k + 1)× n matrix U∗ is obtained

by stacking over t the matrices u∗t︸︷︷︸
(k+1)×n

• Λ
′︸︷︷︸

k×k

≡ S−1
w︸︷︷︸
k×k

√
λ R

′︸︷︷︸
k×k

Multiplying by
√
H and transposing we obtain:

√
H
(

Θ̂′t −Θ′t −Θ′Bt

)
=

(
1√
H

(
U
′∗X∗ww,t − u

′r
t Λ
))( 1

H
X∗′w,tX

∗
w,t

)−1

Taking vec of both sides yields:

√
Hvec

(
Θ̂′t −Θ′t −Θ′Bt

)
=
(
H
(
X∗′w,tX

∗
w,t

)−1 ⊗ In
)
vec

(
1√
H

(
U
′∗X∗ww,t − u

′r
t Λ
))

. (25)

Let us analyze more in detail the term vec
(
U
′∗X∗ww,t − u

′r
t Λ
)
. First, notice that:

vec

(
1√
H
U
′∗X∗ww,t − u

′r
t Λ

)
=

1√
H

(
X ′∗ww,t ⊗ In

)︸ ︷︷ ︸
kn×nT (k+1)

vec
(
U
′∗
)

︸ ︷︷ ︸
nT (k+1)×1

− 1√
H

(
Λ
′ ⊗ In

)
︸ ︷︷ ︸

kn×kn

urt︸︷︷︸
kn×1

(26)

where we have used the fact that urt = vec(u
′r
t )

We need to derive the asymptotic behaviour of this term. There are four terms to consider.
Term # 1:

1

H

(
X ′∗ww,t ⊗ In

)
var

(
vec
(
U
′∗
)) (

X∗ww,t ⊗ In
)

=
1

H

(
X ′∗ww,t ⊗ In

) (
IT (k+1) ⊗ Σn

) (
X∗ww,t ⊗ In

)
10



=
1

H

(
X ′∗ww,tX

∗
ww,t ⊗ Σn

)
= Γ∗ww,t ⊗ Σn

Term # 2:

(Λ′ ⊗ In)V ar(urt ) (Λ⊗ In) = (Λ′ ⊗ In) (Ik ⊗ Σn) (Λ⊗ In) = (Λ′Λ⊗ Σn)

Term # 3:

(
X ′∗ww,t ⊗ In

)
cov

vec(U ′∗)︸ ︷︷ ︸
nT (k+1)×1

, (urt︸︷︷︸)′
1×kn

 (Λ⊗ In)

To analyse this notice that :

vec(U
′∗) =



u1

ur1

u2

ur2

...

ut

urt

...


This means that the relevant matrix will contain zeros everywhere but in correspondance

of the vector urt appearing in vec(U
′∗), where it will equal Ik ⊗ Σn. Compactly, this can be

written as:

cov
(
vec(U

′∗), (vec(urt ))
′
)

︸ ︷︷ ︸
nT (k+1)×kn

=

 0[(t−1)(k+1)+1]×k

Ik

0(T−t)(k+1)×k

⊗ Σn ≡ Ξ︸︷︷︸
T (k+1)×k

⊗ Σn.

Plugging in this term, we have

(
X ′∗ww,t ⊗ In

)
cov

vec(U ′∗)︸ ︷︷ ︸
nT (k+1)×1

, (urt )
′︸︷︷︸

1×kn

 (Λ⊗ In) =
(
X ′∗ww,t ⊗ In

)
(Ξ⊗ Σn) (Λ⊗ In)

=

X ′∗ww,tΞΛ︸ ︷︷ ︸
k×k

⊗ Σn


Term # 4: is simply the transpose of Term # 3.
Collecting terms we have that the main normalizing term is:

11



Γ∗∗ww,t =
(
Γ∗ww,t ⊗ Σn

)
+ (Λ′Λ⊗ Σn)−

(
X ′∗ww,tΞΛ⊗ Σn

)
−
(
Λ′ΞX∗ww,t ⊗ Σn

)
(27)

=
(
(Γ∗ww,t + Λ′Λ−X ′∗ww,tΞΛ− Λ′ΞX∗ww,t)⊗ Σn

)
From this the proof follows.

2.3 Case 2: R does not have a Kronecker structure

Let us now turn to the more general case when R does not have a Kronecker structure. In
this case the estimator can be written as:

β̂t =


In ⊗ T∑

j=1

wj,txjx
′
j︸ ︷︷ ︸


nk×nk

+ λR′R


−1 [

T∑
j=1

wj,t (In ⊗ xj) yj + λR′r

]

=

[(
In ⊗

T∑
j=1

wj,txjx
′
j

)
+ λR′R

]−1 [ T∑
j=1

wj,tvec(xjy
′
j) + λR′r

]
. (28)

A crucial difference between the estimator in (28) and the one in (16) is that the latter only
requires the inversion of k dimensional matrices, which makes it computationally much faster.
On the other hand, (28) can handle more general constraints. The properties of β̂t are derived
in the following theorem.

Theorem 2 Let the model be given by (9) and (10) where ut is a martingale difference sequence
with finite fourth moments. Let (2) hold, H = o(T 1/2). Let us define Φ = λ

H
R′R, Γw,t =

plimT→∞
1
H

∑T
j=1 wj,t(xjx

′
j), Γww,t = plimT→∞

1
H

∑T
j=1 w

2
j,txjx

′
j

and βBt = plimT→∞

[(
In ⊗

∑T
j=1wj,txjx

′
j

)
+ λR′R

]−1

λR′r. Then,

√
H
[
(In ⊗ Γw,t + Φ)−1 (Σn ⊗ Γww,t + Φ) (In ⊗ Γwt + Φ)−1]−1/2

(
β̂t − βt − βBt

)
→d N (0, I)

(29)

Proof. Replacing in (28) yj and r with the processes implied by the model (9)-(10) we
have:

β̂t − βt =

[
T∑
j=1

wj,t(In ⊗ xjx′j) + λR′R

]−1 [ T∑
j=1

wj,t(In ⊗ xjx′j + λR′R)(βj − βt − βBt )

]
+

[
In ⊗

T∑
j=1

wj,txjx
′
j + λR′R

]−1 [ T∑
j=1

wj,t(In ⊗ xj)uj +
√
λR′urt )

]

12



where, again, the term that multiplies (βj − βt) is negligible assuming that the bandwidth is
op(T

1/2). The analysis of the estimation bias and the convergence to normality follows trivially
as in Theorem 1, so we do not repeat it here.

2.4 Variance and MSE of the constrained estimator

In this subsection we discuss the effects of penalization on the variance and on the Mean
Square Error (MSE) of the penalized estimator, relative to those of the unconstrained one. In
particular, in the following theorem we show that the stochastic constraints, whether valid or
not, have the unambiguous effect of lowering a quantity related to the sample second moment
of the non-parametric estimator.

Theorem 3 Let the model be given by (9) and (10). Let E = In ⊗
∑T

j=1wj,txjx
′
j, F =

λR′R,and G =
∑T

j=1 wj,tvec(xjy
′
j) =

∑
j=1wj,t(In ⊗ xj)y′j. Then,

β̂t = [E + F ]−1
[
Eβ̂t,GKY + λR′r

]
.

Further, [E + F ]−1
[
Eβ̂t,GKY β̂

′
t,GKYE

′
]

[E ′ + F ′]−1− β̂t,GKY β̂
′
t,GKY is a positive semi-definite

matrix.

Proof. Let us rewrite the constrained estimator as a linear combination of the uncon-
strained one and of the constraints. If we define E = In⊗

∑T
j=1 wj,txjx

′
j, F = λR′R,and G =∑T

j=1 wj,tvec(xjy
′
j) =

∑
j=1wj,t(In⊗xj)y′j,then the unconstrained estimator is β̂t,GKY = E−1G.

We can therefore write (28) as:

β̂t = [E + F ]−1
[
Eβ̂t,GKY + λR′r

]
Defining C = β̂t,GKY β̂

′
t,GKY we have that for any vector q and w = E [E + F ]−1 q

q′

 [E + F ]−1
[
Eβ̂t,GKY β̂

′
t,GKYE

′
]

[E′ + F ′]−1−

β̂t,GKY β̂
′
t,GKY

 q = q′(C − [E + F ]−1ECE [E + F ]−1)q

= w′(E−1 [E + F ]C [E + F ]E−1 − C)w

= w′(
[
I + E−1F

]
C
[
I + FE−1

]
− C)w

= w′(
[
C + E−1FC

] [
I + FE−1

]
− C)w

= w′(C + E−1FC + CFE−1 + E−1FCFE−1 − C)w

= w′(E−1FC + CFE−1 + E−1FCFE−1)w ≥ 0,

which proves the result.8

8This can also be seen intuitively by noticing that var
(
β̂t

)
has a lower bound at 0, attained when λ→∞,

and an upper bound at var(β̂t,GKY ), corresponding to λ = 0. Furthermore [E + F ]
−1
E falls monotonically as

λ increases. It follows that var
(
β̂t

)
≤ var(β̂t,GKY ) for every positive value of λ

13



Next, we turn to a comparison of the Mean Squared Error of the constrained and uncon-
strained non-parametric estimators. We see that the ranking is not clear-cut, unless a certain
condition is satisfied.

Following Alkhamisi and Shukur (2008), let us analyze the canonical9 version of model (13).
Let Λ and Ψ be the eigenvalues/eigenvectors of X∗′w,tX∗w,t, i.e. X∗′w,tX∗w,t = ΨΛΨ′ and ΨΨ′ = Ik.
Defining ỹt =

√
wt,tyt, x̃t =

√
wt,txt, ũt =

√
wt,tyt, the weighted regression model (in matrix

form) is:

ỹt
′

1×n
= x̃t

′

1×k
Θt
k×n

+ ũt
′

1×n
,

√
λr

k×n
=
√
λR
k×k

Θt
k×n

+ ur
k×n

.

Using ΨΨ′ = Ik we can write z̃t′ = x̃t
′Ψ and Ξt = Ψ′Θt, and re-state the model in canonical

form as:

ỹt
′

1×n
= z̃t

′

1×k
Ξt
k×n

+ ũt
′

1×n
,

√
λr

k×n
=
√
λR
k×k

Θt
k×n

+ ur
k×n

.

The unconstrained estimator of Ξt is then:

Ξu
t = (Z∗′w,tZ

∗
w,t)
−1(Z∗′w,tY

∗
w,t)

=
(
Ψ′X∗′w,tX

∗
w,tΨ

)−1
(Z∗′w,tY

∗
w,t)

= Λ−1(Z∗′w,tY
∗
w,t),

with V u =
(

1
H

Λ
)−1

( 1
H
Z∗′w,tWH,tZ

∗′
ww,t)

(
1
H

Λ
)−1 ⊗ Σn = V

u ⊗ Σn.The constrained estimator is

Ξc
t = (Λ + λR

′
R)−1(Z∗′w,tY

∗
w,t + λR

′
r),

with V c =
(

1
H

Λ + Φ
)−1

( 1
H
Z∗′w,tWH,tZ

∗′
ww,t + Φ)

(
1
H

Λ + Φ
)−1⊗Σn = V

c⊗Σn, where Φ = λ
H
R
′
R.

To study the conditions under which V
u − V

c is a semi-positive definite matrix, let us
consider equivalently the quadratic form:10

β′ (Λ + Φ) [V
u − V c

] (Λ + Φ) β =

= β′ (Λ + Φ) Λ−1Z∗′w,tWH,tZ
∗′
ww,t︸ ︷︷ ︸

≡A

Λ−1 (Λ + Φ) β − β′Z∗′w,tWH,tZ
∗′
ww,t︸ ︷︷ ︸

≡A

+ Φβ

= β′
[(
I + ΦΛ−1

)
A
(
I + Λ−1Φ

)
− (A+ Φ)

]
β

9In the canonical form the regressors are orthogonalized, as clarified below.
10To simplify the notation, in what follows we have set H = 1. This assumption is immaterial, since this

term can be factored out.
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= β′
[
A+ AΛ−1Φ + ΦΛ−1A+ ΦΛ−1AΛ−1Φ− A− Φ

]
β

= β′
[
AΛ−1Φ + ΦΛ−1A+ ΦΛ−1AΛ−1Φ− Φ

]
β.

Hence, if the quantity [AΛ−1Φ + ΦΛ−1A+ ΦΛ−1AΛ−1Φ− Φ] is positive semi-positive it follows
that V u − V c is indeed a semi-positive definite matrix suggesting such a relationship for the
mean square errors of the respective estimators. Notice that the required condition is related
to the amount of collinearity among the regressors. Specifically, a high degree of collinearity
in the time series collected in the matrix X∗w,t will push some eigenvalues of X∗′w,tX∗w,t close to
0, therefore making Λ−1 tend to ∞.

2.5 Time-varying volatilities

When both the error variances and the VAR coefficients change over time, variations in
the parameters and in the variances can be confounded, see Cogley and Sargent (2005). An
important implication is that if changes in the variances of the errors are neglected then the
importance of variation in the VAR coefficients could be overstated. Giraitis, Kapetanios,
and Yates (2014) show that the properties of their estimator are unaffected by the presence
of stochastic volatilities as long as standard errors are studentized by an appropriate time-
varying covariance matrix for the error terms. When performing structural analysis in a VAR
context, GKY suggest to model time variation in the variance of the disturbances with a two-
step approach. The method consists of fitting first an homoskedastic VAR, then estimating
the time-varying volatilities on the residuals obtained in the first stage via the following kernel
estimator:

Ψ̂t =
T∑
j=1

wj,t(HΨ)utu
′
t, (30)

where the bandwidth parameter HΨ is not necessarily the same as the one used to estimate the
coefficients. Orthogonalization of the residuals is then based on the time-varying covariance
matrix Ψ̂t.

Our penalized kernel estimator can be adapted to account for changing volatilities along
these lines, using the GLS correction proposed in Theil and Goldberger (1960). In the first
step, the VAR coefficients are estimated using (28) and the resulting residuals are used to
compute Ψ̂t as in (30). In a second step a GLS correction is applied:

βt =

[
T∑
j=1

wj,t

(
Ψ̂−1
j ⊗ x′jxj

)
+ λR′R

]−1 [ T∑
j=1

wj,tvec
(
x′jy

′
jΨ̂
−1
j

)
+ λR′r

]
(31)

Notice that this GLS correction requires the inversion of potentially large matrices (nk×nk),
which slows down computation and limits the size of the VAR. In the empirical applications
and in the Monte Carlo analysis discussed in Sections 5 and 4, where we experiment with
relatively large systems, we therefore do not apply this correction. However, in Appendix B
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we appraise the merits of this GLS correction in the context of a forecast competition that
involves 20 variables and quarterly data. In that context, we find that the estimator that does
not account for time-varying volatility actually produces more accurate forecasts.

We now turn to discussing how two popular shrinkage methods can be adapted to our setup.

2.6 Ridge type shrinkage

The Ridge regression penalty shrinks all the parameters uniformly towards zero at a given
penalty rate λ. A TVP-VAR with Ridge shrinkage can be obtained by setting R = Ink and
r = 0, which consists of imposing the following stochastic constraints at each t:

0 =
√
λβt + urt . (32)

where the properties of urt are as defined in Theorem 1.
The resulting estimator takes the form:

βRidget (λ,H) =

[
In ⊗

(
T∑
j=1

wj,tx
′
jxj + λIk

)]−1 [
vec

(
T∑
j=1

wj,tx
′
jy
′
j

)]
(33)

Notice that, given the Kronecker structure of the constraints (as R is an identity matrix),
estimation can proceed equation by equation and the estimator can be written in matrix form
as:

ΘRidge
t (λ,H) =

[
X ′w,tXw,t + λIk

]−1 [
X ′ww,tY

]
(34)

2.7 Litterman type shrinkage

Some of the features of the Ridge penalty can be unappealing in the context of VAR
models. First, the fact that all the coefficients are shrunk towards zero imposes a structure
of serially uncorrelated data, which is at odds with the strong persistence that characterizes
most macroeconomic time series. Second, the same penalty is imposed on all the coefficients
(including the intercept). Yet, having some flexibility in the penalization of the different
parameters could be desirable. A more general set of stochastic constraints, which produce the
same effects that the Litterman prior has in a Bayesian framework,11 is given by setting r and
R as follows:

r =

(
diag(δ1σ1, δ2σ2, δ3σ3, ..., δnσn)

0n(p−1)+1×n

)
R =

(
Σ 0

0 σ2
c

)
, where

Σ = diag(1, 2, 3, ..., p)⊗ diag(σ1, σ2, ..., σn) (35)

11Karlsson (2012) distinguishes the Litterman prior from the more general Minnesota prior based on the
assumptions on the covariance matrix of the VAR residuals, which is assumed to be diagonal in the Litterman
prior, full in the more general Minnesota prior, see Kadiyala and Karlsson (1993, 1997).
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Notice that the vector r = vec(r) towards which the VAR coefficients are driven by the con-
straints is generally different from zero. In empirical applications, for data in levels, the n
values δi are typically set to 1, so that the model is pushed to behave like a multivariate ran-
dom walk plus noise. Moreover, unlike in Ridge regressions, the precision of the constraints is
not uniform across parameters but it is higher for more distant lags, as implied by the decay
terms (1, 2, ..., p). The scaling factors σ2

1, ..., σ
2
n appearing in Σ can be obtained by univariate

regressions and the precision on the intercept σ2
c can be set to an arbitrarily small or large

value, depending on the application.12

Summarizing, by appropriately penalizing the GKY estimator, some discipline on the VAR
coefficients can be imposed through stochastic constraints a la Theil and Goldberger (1960).
This makes the GKY method, originally designed for small/medium scale VARs, suitable
for handling large n dataset. We have seen that the resulting estimator has a well defined
asymptotic distribution under rather mild conditions, and is generally more efficient than
the unconstrained GKY estimator. Moreover, for popular shrinkage methods the resulting
estimator can be cast in matrix form, with notable computational advantages.

The double nature of the estimator (being both nonparametric and penalized) is captured
by its dependence on the two constants: H, the bandwidth parameter that determines the
weight that each observation has as a function of its distance from t, and λ, a constant that
determines the severity of the penalty. In the next section we discuss alternative solutions to
the problem of determining these two parameters in empirical applications.

3 Model specification

The problem of setting appropriate values of λ andH can be tackled in two ways. The first is
model selection, which typically rests on the optimization of a given criterion. We describe two
such criteria. The former adapts to our problem the procedure devised by Banbura, Giannone,
and Reichlin (2010), and has an “in sample” fit flavor. The latter favors models with better out
of sample performance and is inspired by the method proposed by Kapetanios, Labhard, and
Price (2008) for assigning weights to different models in the context of forecast averaging. In
the remainder of the paper we will refer to these two criteria as Lfit and Lmse. The second route
consists of pooling the results obtained on the basis of a large range of different specifications.
We describe each strategy in turn.

12For example, in a Bayesian context, Carriero, Kapetanios, and Marcellino (2009) adopt a very tight prior
centered around zero on the intercept in a large VAR, favoring a driftless random walk behavior, to capture
the behavior of a panel of exchange rates.
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3.1 Model selection criteria

3.1.1 The Lfit criterion

The first criterion that we consider adapts to our problem the method by Banbura, Gian-
none, and Reichlin (2010). The intuition of the method is that, when forecasting with large
datasets, some variables are more relevant than others. Over fitting should then be penalized
up to the point where a large VAR achieves the same fit as that of a smaller VAR that only
includes the key variables of interest. We adapt their criterion to the problem of choosing
simultaneously λ and H. Formally, the criterion involves the following steps:

1. Pick a subset of n1 variables of interest out of the n variables in the VAR.

2. Compute the in sample fit of a benchmark VAR with constant coefficients that only
includes these n1 variables.

3. Select λ and H to minimize the distance between the in sample fit of the large n variate
VAR (featuring both time-varying parameters and shrinkage) and the benchmark VAR.

Formally, the loss function to be minimized is the following:

Lfit(λ,H) =

∣∣∣∣∣
n1∑
i=1

rssin(λ,H)

var(yt,i)
−

n1∑
i

rssin1

var(yt,i)

∣∣∣∣∣
where the scaling by var(yt,i) is needed to account for the different variance of the variables.

3.1.2 The Lmse criterion

As an alternative, λ and H can be selected at each point in time based on the predictive
performance of the model in the recent past. The method, which has a cross-validation flavor,
is similar in spirit to the one used by Kapetanios, Labhard, and Price (2008) to compute model
weights in the context of forecast averaging. The necessary steps are the following:

1. Pick a subset of n1 variables of interest out of the n variables in the VAR.13

2. At each step t in the forecast exercise and for each forecast horizon h consider a relatively
short window of recent data t − L − h, t − L − h + 1, . . . , t − 1 − h and compute the h
steps ahead Mean Square Error (MSE) mseih(λ,H), for each i ∈ n1.

3. Pick the values of λ and H that minimize the sum of these n1 MSEs.

Formally, the loss function to be minimized is:

Lmse(λ,H) =

n1∑
i=1

mseih(λ,H)

var(yt,i)

where, again, the msei is scaled by the variance of yi.
13Notice that, when using this criterion, we could set n1 = n, that is we could focus on the whole set of

variables in the VAR rather than only on a subset.

18



3.1.3 Practical considerations

In principle, standard optimization algorithms could be used to minimize bot the Lfit and
the Lmse criterion. However, we have often found that the minimum occurs at a kink. A
problem of this type could arise because the stochastic constraints shrink the VAR coefficients
towards a constant parameter structure but time variation is also affected by the width of the
kernel.

Since our estimator is easy to compute a feasible solution is represented by a grid search
approach, along the lines of Carriero, Kapetanios, and Marcellino (2009) and Koop and Ko-
robilis (2013). More specifically, in the empirical analysis that follows, we experiment with a
wide (38 elements) grid for (the reciprocal) of λ, ϕ = 1/λ.

ϕgrid = 10−10, 10−5, 10−4, 10−3, 10−2, 10−2 + .3, 10−2 + 2× .3, 10−2 + 3× 03, . . . , 1 (36)

We suggest the use of a wider grid than the one used, for instance, by Koop and Korobilis (2013)
because the stochastic constraints that we apply are binding at each point in time (rather than
just at the initial condition like in Kalman filter based estimation methods), so that higher
values of ϕ (i.e. lower values of λ) are needed to allow for meaningful time variation in the
VAR coefficients.

Regarding the width of the kernel function wj,t, we work with a six points grid for the
tuning parameter H:

Hgrid = 0.5, 0.6, 0.7, 0.8, 0.9, 1, (37)

consistently with the parameterization used in Monte Carlo experiments by Giraitis, Kapetan-
ios, and Price (2013).

3.2 Pooling

An alternative strategy to model selection consists of pooling model estimates obtained with
different values of λ and H. This could be particularly valuable in the context of forecasting.
From a theoretical standpoint, the rationale for forecast pooling in the presence of structural
breaks is offered for example by Pesaran and Pick (2011), who show that averaging forecasts
over different estimation windows reduces the forecast bias and mean squared forecast errors,
provided that breaks are not too small. In empirical applications pooling is typically found to
be effective in improving forecast accuracy both in Bayesian (Koop and Korobilis, 2013) and in
frequentist (Kapetanios, Labhard, and Price, 2008) settings.14 In our context, model pooling
could be based on relatively sophisticated weighting schemes, based on the selection criteria
described in the previous subsections, or on simpler strategies like equal weights averaging.

14Kuzin, Marcellino, and Schumacher (2012) show that forecast pooling also works well in nowcasting GDP.
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4 Finite sample properties

To assess the finite sample properties of our estimator we design a Monte Carlo exercise in
which we contrast the forecasting performance of the non-parametric estimator with that of a
popular parametric alternative.

We consider three alternative DGPs. In the first DGP (DGP-1) we assume that the coeffi-
cients follow a random walk plus noise process:

Yt = ΛtYt−1 + εt

Λt = Λt−1 + ηt

We make the stochastic process of the coefficients broadly consistent with a Litterman prior
by bounding the first autoregressive parameter to lie between 0.85 and 1.15 In the second one
(DGP-2) we let the coefficients break only occasionally rather than at each time t:

Λt = (1− I(τ))Λt−1 + I(τ)Λt−1 + ηt

The probability of the coefficients breaking equals a constant τ that we set to .025, implying
that, with quarterly data, we would observe on average a discrete break once every ten years.
We also relax the bounds on Λt and let them fluctuate randomly between 0 and 1.16 In the third
set of simulations (DGP-3) coefficients evolve as a sine functions and are bounded between -1
and 1:

Λt = sin(10πt/T ) + ηt

In all DGPs we assume ηt v N(0, 1) and random walk stochastic volatilities for the measure-
ment equations:

εit = uit exp(λit)

λit = λit−1 + νit

where uit v N(0, 1) and νit v N(0, ση). We calibrate ση = 0.01.17 For the remaining technical
details on the design of the Monte Carlo exercise see Appendix A.1

We assess the performance of our method based on the accuracy of one step ahead forecast
errors. As a benchmark, we use the parametric estimator developed by Koop and Korobilis
(2013), which we briefly describe in the next sub-section. While the controlled environment

15Details on how this is achieved are presented in Appendix A.
16With tight boundaries (like the 0.85-1 interval imposed in DGP-1) the difference between coefficients that

break only occasionally and coefficients that drift slowly, is negligible.
17Notice that this value for ση is quite large. Cogley and Sargent (2005) for example, assume that a priori

ση is distributed as an inverse gamma with a single degree of freedom and scale parameter 0.012. Since the
scale parameter can be interpreted as the (prior) sum of square residuals, this means that a priori they set the
variance of the innovations to the log-volatility to 0.012/T . Assuming T = 100, the prior variance is 10−6 , as
opposed to our choice of 10−2.
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provided by the Monte Carlo exercise allows us to evaluate how robust the two methods are to
different assumptions on the law of motion of the model parameters, a comparison of the two
approaches based on actual data is presented later in section 5.

4.1 A parametric estimator

The model specification adopted by Koop and Korobilis (2013) follows closely the literature
on (small) TVP-VARs proposed by Cogley and Sargent (2005) and Primiceri (2005) in that
it assumes a random walk evolution of the VAR coefficients. The model can then be cast in
State Space, where the VAR equations

yt = Ztβt + εt (38)

serve as measurement equations and the unobserved states, the parameters βt, evolve as driftless
random walks plus noise:

βt+1 = βt + ut+1, (39)

with εt ∼ N(0,Σt) and ut ∼ N(0, Qt). Also εt and ut are independent of one another and serially
uncorrelated. Even for medium-sized VARs the estimation algorithms developed by Cogley and
Sargent (2005) and Primiceri (2005) become unfeasible due to computational complexity. To
overcome these difficulties, following the literature on Adaptive Algorithms, see for example
Ljung (1992) and Sargent (1999), Koop and Korobilis (2013) make two simplifying assumptions.
The first one involves the matrix Qt, which is specified as follows:

Qt =

(
1− θ
θ

)
Pt−1/t−1 (40)

where Pt−1/t−1 is the estimated covariance matrix of the unobserved states βt−1 conditional on
data up to t − 1 and θ is a forgetting factor (0 < θ < 1).18 A similar simplifying assumption
on Σt ensures that this matrix can be estimated by suitably discounting past squared one step
ahead prediction errors:

Σ̂t = κΣ̂t−1 + (1− κ)vtv
′
t (41)

where vt = yt−Ztβt/t−1. These assumptions make the system matrices Qt and Σt (which are an
input to the Kalman filter at time t) a function of the t-1 output of the Kalman filter itself. This
recursive structure implies that, given an initial condition and the two constants θ and κ, an
estimate of the coefficients βt can be obtained through a single Kalman filter pass. Although it
is laid out in a Bayesian spirit, the restrictions imposed on the Kalman filter recursions reduce
the estimation procedure to a discounted least squares algorithm.

Before moving to the results of the Monte Carlo exercise let us make some remarks on
18Equation (40) basically states that the amount of time variation of the model parameters at time t is a

small fraction of the uncertainty on the unobserved state βt, so that large uncertainty on the value of the state
at time t translates into stronger parameter time variation
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the relative merits of the parametric approach compared to our non-parametric estimator.
First, the use of a parametric model, and the simplifications imposed on the model structure
to make the estimation feasible, do not come without costs. One potential pitfall is that
the model assumes a very specific evolution for the model parameters. The driftless random
walk assumption, widely used in econometrics and macroeconomics, does not have any other
grounding than parsimony and computational convenience. If the true data generating process
(DGP) is, however, very different from the one posited, the model is misspecified and this
could result in poor performance. The second issue is that the curse of dimensionality is only
partially solved. For 20 variables and 4 lags (a standard application in the large VAR literature
with quarterly data) the stacked vector βt contains 1620 elements. Larger model sizes (arising
from a higher number of series in the system or by a higher number of lags, like the 13 lags
conventionally used with monthly data in levels) are intractable in this setup. Finally, since
the only source of time variation in the model is the prediction error, it can be shown that this
forgetting factor algorithm boils down to an exponential smoothing estimator.19 This means
that the effect of the prior on the initial condition β1 will die out relatively quickly. Also, the
longer the sample size, the lower the effect of the prior on the parameter estimates. In contrast,
the stochastic constraints that we use to penalize our estimator are effective at each point in
time.

4.2 Monte Carlo results

For all the DGPs we fit our non-parametric estimator with Litterman-type stochastic con-
straints and average forecasts using equal weights across all the possible values of H and λ

specified in the grids described in the previous Section. The parametric method also needs
a prior on the initial value of the parameters, β1 to discipline the estimation towards values
that are a priori plausible. To keep the comparison with our method as fair as possible we
also impose on the initial condition of the parametric model a Litterman type prior. The re-
maining details of the model specification of the parametric model are quite lengthy and are
documented in the Appendix A.2.

The results of the Monte Carlo exercise are shown in Table 4. The methods are compared in
terms of 1 step ahead RMSE (relative to that of the parametric estimator and averaged across
the n variables using either equal or inverse RMSE weights) for VARs of different sizes (n = 7

and n = 15) and for different sample sizes (100, 150 and 200). Throughout the exercise forecasts
from our proposed estimator are obtained by equal weights averaging across different values for
H and λ. Forecasts are computed on the second half of the sample, i.e. when T=100, forecasts
are computed recursively for t=51 to t=100, when T=150 forecasts are computed recursively
for t=76 to t=150 and so forth.

In the case of DGP-1 the performance of the two estimation methods is broadly comparable,

19See Delle Monache and Petrella (2014), Section 2.
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with the parametric estimator improving slightly (by at most 2%) on the nonparametric one
only for VARs of larger sizes. Notice that in this context one would expect the parametric
estimator to have an edge, given the tight correspondence between the assumptions made by
the model and the actual DGP. The gain attained by this method proves, however, negligible.
When we move to DGP-2 and DGP-3 the relative performance of the nonparametric estimator
improves steadily, with gains of the order of 15% in the case of DGP-3 and n=15. Although
these DGPs are probably less representative of the typical relationship across macroeconomic
time series, they do unveil some fragility of the Kalman filter based method, whose performance
rapidly deteriorates when the behavior of the coefficients moves further and further away from
the random walk setting. The nonparametric estimator, on the other hand, not only proves
robust to heteroschedastic errors but also to a wide range of different specifications of the
coefficients.

Summing up, the results of the Monte Carlo analysis are quite supportive of the nonpara-
metric estimator coupled with stochastic constraints. While this does not constitute conclusive
evidence in favor of our non-parametric approach, we believe that its good theoretical and
finite sample properties, combined with its computational efficiency, make it a very competi-
tive benchmark for modeling and forecasting with large VARs, taking into consideration the
possibility of time variation.

5 Forecast Evaluation

After evaluating the finite sample properties of our estimator by means of simulation ex-
periments, we now explore its performance in the context of an extensive forecast exercise
based on U.S. data. We first discuss the set-up of the exercise, next we present the results,
evaluate the role of forecast pooling and of model size in the TVP context, and finally consider
a comparison with the Koop and Korobilis (2013) approach.

5.1 Set-up of the exercise

Throughout the exercise we use Litterman type constraints, like Banbura, Giannone, and
Reichlin (2010). The information set is composed of 78 time series spanning around five
decades, from January 1959 to July 2013. Table 1 reports the list of the series used in the
exercise together with the value of r used for each variable. Following the convention in the
Bayesian literature we set to 1 the elements of r corresponding to variables that display a trend
and to 0 those corresponding to variables that have a stationary behavior (typically surveys).
We examine the performance of VARs of two sizes. A medium sized VAR that includes only
the 20 indicators that are highlighted in red in Table 1 and a large VAR that makes use of all
the available information.20

20Koop and Korobilis (2013) also look at the performance of trivariate VARs with TVP. We do not pursue
this route as over fitting is not an issue in small systems and in those cases the use of the unconstrained GKY
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We experiment with different model specifications obtained by intersecting various options
for setting λ and H as summarized in Table 2. The table is organized in two panels. The top
panel refers to model specifications that make use of the Lfit criterion, the bottom panel, on
the other hand, to specifications based on the Lmse criterion. Starting from the top panel, the
first set of models (M1 in Table 2) is obtained by fixing H at a given point in the grid and,
conditional on this value of H, setting λ optimally at each t at the value that minimizes the
Lfit function. The second set of models (M2) are obtained as variants of M1 by choosing the
λ that minimizes Lfit in the pre-sample and then keeping it fixed for the rest of the exercise.
In the third set of models (M3) the function Lfit is optimized at each t both with respect
to λ and H. The fourth case (M4) is obtained as variant of M3 by choosing λ optimally in
the pre-sample and then keeping it fixed for the rest of the exercise. The remaining models
(M5 to M8) are obtained by replacing the Lfit with the Lmse criterion. These different model
specifications allow us to assess the importance of the various elements that characterize the
proposed estimator.

The subset n1 of variables of interest on which we focus the forecast evaluation is set to
n1 = 3, and we monitor the performance of three indicators of particular interest for monetary
policy, i.e. the Fed Fund Rates (FEDFUNDS), the number of non farm payroll employees
(PAYEMS) and CPI inflation (CPIAUCSL). We fix the lag length to 13 and retain 10 years
of data (120 observations) as the first estimation sample. We then produce 1 to 24 months
ahead pseudo real time forecasts with the first estimation sample ending in January 1970 and
the last one ending in July 2011, for a total number of 499 forecasts. Finally, in the case of
the Lmse criterion we need to choose L, that is the width of the short window of data on which
to measure the predictive performance of the model. We set L =36 (corresponding to three
years of data). As a benchmark we adopt the large Bayesian VAR (BVAR) with a Litterman
prior and constant coefficients, which can be obtained as a restricted version of our estimator
by shutting down the time variation in the VAR coefficients.

5.2 Results

As a first piece of evidence, in Figure 1 (for the 20 variables VAR) and Figure 2 (for the 78
variables VAR) we show the behavior of the penalty parameter λ in the specifications where
both λ and H are optimized over time with the Lfit criterion (specification M7 in Table 2).21

As mentioned, high values of λ imply that the constraints hold more tightly, so that the VAR
coefficients are less informed by the data. Starting from Figure 1, three distinct phases can be
identified. In the first one λ starts from relatively low values and increases smoothly over time.
In the 80s and throughout the Great Moderation it stays relatively constant around this value,

estimator is appropriate.
21Results obtained using the Lmse are qualitatively similar, but for some data points the penalty parameter

λ goes to infinity (i.e. the model is driven towards a multivariate random walk) making the visual result less
clear.
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to start falling again in the mid 1990s, with a steeper slope at the beginning of the 2000s. These
results are broadly in line with those stressed in the literature on the predictability of macro
times series before and after the Great Moderation. For example D’Agostino, Giannone, and
Surico (2006) find that the predictive content for inflation and economic activity of common
factors extracted from large panels weakened significantly during the Great Moderation, while
in periods of higher volatility cross-sectional information proved more relevant for forecasting.
Given the direct relationship between the relevance of cross sectional information and λ, the
results in Figure 1 send a similar message, as the contribution of cross-sectional information
is progressively penalized by higher values of λ in the 1980s. When the dimension of the
VAR increases (Figure 2) the optimal value of λ is higher, confirming the theoretical results in
De Mol, Giannone, and Reichlin (2008) on the inverse relationship between the optimal level
of shrinkage and cross-sectional dimensions in large panels. An inverse U shaped evolution of
λ can be detected also in this case.

To verify that time variation in the coefficients is indeed useful for forecasting, we compare
the performance of the 20 variables TVP-VAR with that of its constant coefficient counterpart.
The results of this exercise are shown for the various model specifications in Table 3 where
we report relative Root Mean Square Forecast Errors (RMSE). Values below 1, which imply
that the introduction of time variation through the kernel estimator induces an improvement
in prediction accuracy, are highlighted in gray. We assess the statistical significance in forecast
accuracy through a Diebold-Mariano test (Diebold and Mariano, 1995) and underline the cases
in which the null hypothesis can be rejected at the 10% significance. A bird-eye view of the
table reveals that in many instances time variation increases forecast accuracy, as the majority
of the cells (around 70% of the cases) report values below 1. However, the average improvement
appears to be small as in most of the cases the gain is of the order of 5%. As a consequence, most
of the differences in forecast accuracy are not significant, according to the Diebold Mariano test.
Looking more in detail, three results emerge. First, time variation matters at long horizons for
inflation and interest rates, while for employment the improvement is more consistent across
different horizons. Second, the specifications that work best are those in which H is fixed at
around 0.7 and λ is optimized in real time according to the Lmse criterion (M6 in the Table).
In this case the TVP-VAR improves on the constant coefficients benchmark by more than 10%
at long-horizons. Third, specifications in which both λ and H are optimized in real time (M3
and M8) do not perform well and, in fact, are often outperformed by the benchmark.

5.3 The role of forecast pooling

The substantial heterogeneity observed in the forecasting results across model specifica-
tions suggests that the performance of TVP-VAR could be further improved through forecast
combination. Since combination schemes based on equal weights are usually found to perform
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remarkably well, we proceed by pooling forecasts through simple averaging.22

The results obtained by forecast pooling are summarized in Figure 3. The plots, which
show the RMSEs of the combined TVP-VARs relative to the fixed coefficients benchmark, are
organized in three panels corresponding to the three different target variables, CPI, Fed Fund
Rates and employment. The six bars in each panel correspond to different forecast horizons,
from 1 to 24 months ahead. Bars in gray identify the forecast horizons for which a Diebold-
Mariano test does not reject the null hypothesis of equal forecast accuracy, while those in red
denote the cases for which forecast accuracy is significantly different at the 10% confidence
level.23

The forecasts obtained by pooling predictions from the different time-varying model spec-
ifications prove to be more accurate than those obtained from the benchmark at basically all
horizons. Furthermore, according to the Diebold Mariano test, the improvement is statistically
significant at the 10% confidence level, as evident from the large prevalence of red bars. There
is also a tendency of the relative RMSEs to fall as the forecast horizon increases, as it was
already apparent in the results displayed in Table 3, suggesting that time variation in the VAR
coefficients is relatively more important for forecasting at longer than at shorter horizons. In
Figure 4 we report the cumulative sum of squared forecast error differentials, computed as

CSSEDt =
t∑

j=1

(e2
j,BV AR − e2

j,TV P−V AR). (42)

This statistics is very useful in revealing the parts of the forecast sample where the TVP-VAR
accrues its gains. Positive and increasing values indicate that the TVP model outperforms the
benchmark, while negative and decreasing values suggest the opposite. At relatively shorter
horizons (top panels) the model with time-varying coefficients performs better than the one with
constant parameters around economic downturns, as indicated by the jumps of the CSSED in
periods classified by the NBER as recessions (gray shaded areas). At longer horizons (bottom
panels), the gain is relatively uniform across the sample for interest rates and employment,
while it is relatively concentrated in the 70s-80s for inflation.

5.4 The role of model size

To answer the question of whether enlarging the information set eliminates the need for
time variation in the coefficients, we compare the performance of the 20 variables TVP-VAR
with that of a fixed coefficients BVAR with 78 variables. The relative RMSEs reported in
Figure 5 show that at shorter horizons (1 to 6 months ahead) the performance of the two
models is overall comparable, although the time-varying model is more accurate in tracking

22More sophisticated weighting schemes, based on the selection criteria described in Table 2, deliver very
similar results. The analysis is available upon request.

23The test is two sided so that bars in red and higher than 1 indicate that the forecast of the benchmark
model is significantly more accurate.
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interest rates. However, when we move to longer horizons, the performance of the TVP-VAR
improves considerably. Looking at Figure 6 we find again that the CSSED tends to jump around
recession periods. Hence, the importance of TVP is not (mainly) due to omitted variables.

The next issue that we want to explore is whether, in the context of a TVP-VAR, it pays
off to go larger than around 20 variables, provided that the set of variables of interest is small.
We tackle this question by comparing the performance of the 20 variables TVP-VAR with
that of a 78 variables TVP-VAR. We find that, on the whole forecast sample, a medium-sized
information set is sufficient to capture the relevant dynamics. The predictive accuracy of the 20
variables VAR is, in fact, typically higher than that of the larger model, especially for interest
rates (see Figure 7). The evolution of the CSSED, shown in Figure 8, reveals that the accuracy
gains of the 20 variables VAR are actually concentrated in the first part of the sample, and
that from the 90s onwards, the performance of the two model sizes is very similar. This is an
interesting finding that extends to a time-varying coefficients context the results obtained by
Banbura, Giannone, and Reichlin (2010) in the case of constant coefficient VARs and those by
Boivin and Ng (2006) in constant coefficient factor models.

5.5 Comparison with Koop and Korobilis (2013)

A comparison of the empirical performance of the nonparametric and parametric TVP-VAR
needs to take into account the computational limitations to which the latter is subject. This
means that a forecast competition based on monthly VARs with 13 lags, like those employed in
the previous subsections, is unfeasible. We therefore proceed by taking quarterly transforma-
tions of the variables and specify a 20 variables VAR with 4 lags. The forecast exercise is similar
to the one performed on monthly data, that is we produce 1 to 8 quarters ahead forecasts of
the three key variables in our dataset, CPI, the Fed Fund Rates and payroll employment, with
an out sample period ranging from 1970:q1 to 2013:q2 (167 data points).

Figure 9 presents the RMSEs of the kernel based estimator relative to those of the paramet-
ric one. Again, we use red bars to highlight the cases where a Diebold-Mariano test rejects the
null hypothesis of equal forecast accuracy. Visual inspection of the graph reveals that the non-
parametric estimator generates significantly better predictions for inflation and employment,
while the parametric estimator is more accurate in forecasting short term interest rates. As
for the remaining variables, the only case in which the Diebold-Mariano test rejects in favor of
the parametric estimator is for the 10 year rate and for M1 at very short horizons, while for
the remaining 10 indicators the evidence is either in favor of the nonparametric approach (red
bars lower than one) or inconclusive (gray bars).

Summarizing, the outcome of this extensive forecasting exercise provides further broad
support for our method. Moreover, the fact that the estimator can accommodate a large
information set has allowed us to address issues that could not be investigated with existing
methods, such as the relationship between the size of the information set and parameters’
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time variation and the relevance of the model size in the context of models with time-varying
parameters.

6 Structural analysis

Our non-parametric estimator can be useful also in the context of structural analysis when
time variation in the parameters is considered to be an issue. As an illustration, we use
the proposed method to estimate the time-varying responses of industrial production indexes
to an unexpected increase in the price of oil. The changing response of key macroeconomic
variables to unexpected oil price increases has been greatly debated in the past decade. In
particular, using structural VARs and different identification assumptions a number of studies
have found that oil price increases are associated with smaller losses in U.S. output in more
recent years. While some of these studies have used sample-split approaches, like Edelstein and
Kilian (2009), Blanchard and Gali (2007) and Blanchard and Riggi (2013), others have relied on
Bayesian VARs with drifting coefficients and volatilities, see Baumeister and Peersman (2013)
and Hahn and Mestre (2011). The latter approach, however, severely constraints the size of
the system to be estimated so that only a small number of variables can be jointly modeled.
Partly as a consequence of this constraint, available evidence on the break in the oil/output
nexus mainly refers to aggregate GDP. Sectoral aspects, however, are equally relevant as the
recessionary effect of oil price shocks is partly due to a costly reallocation of labor and capital
away from energy intensive sectors (Davis and Haltiwanger, 2001). Where a more granular
perspective is taken, like in Edelstein and Kilian (2009), special attention is paid to the role
of the automotive sector, which is considered the main transmission channel of energy price
shocks. Indeed as energy price increases reduce purchases of cars, and given that the dollar
value of these purchases is large relatively to the energy they use, even small energy price shocks
can cause large effects, an intuition formalized by Hamilton (1988). Given the importance of
this sector, one would expect it to be the main responsible for the changing relationship between
oil and GDP.

In this section we revisit this issue by extending the analysis conducted in Edelstein and
Kilian (2009), based on a bivariate VAR and on a sample-split approach, to a large TVP-VAR
setting in which energy prices are modeled jointly with industrial output in different sectors. In
particular, we augment our baseline 20 variables VAR with 8 industrial production series split
by market destination.24 The additional series are Business Equipment, Consumer Goods and
its two sub-components Durable (half of which is accounted for by Automotive products) and
Nondurable (Food, Clothing, Chemical and Paper products), Final Product goods (Construc-
tion and Business Supplies and Defense and Space equipment), Material goods and its two

24Since we are not concerned with forecasting, in the structural analysis presented in this Section we follow
Giraitis, Kapetanios, and Yates (2012) and use a two sided Gaussian kernel with smoothing parameter H = 0.5.
Furthermore, the penalty parameter λ is chosen over the full sample through the Lfit criterion and changing
volatilities are accounted for through the GLS correction in equation (31).
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sub-components Durable (Consumer and Equipment parts) and Nondurable (Textile, Paper
and Chemical). A list of the series, together with their weight on the overall index, is reported
in Table 5.

The identification of energy price shocks follows Edelstein and Kilian (2009), i.e. we assume
that energy price shocks are exogenous relative to contemporaneous movements in the other
variables in the system, which implies ordering the price of oil first in a recursive structural
VAR.25 Kilian and Vega (2011) provide a test of this assumption by regressing daily changes
in the price of oil to daily news on a wide range of macroeconomic data and find no evidence of
feedback from macroeconomic news to energy prices, concluding that energy prices are indeed
predetermined with respect to the U.S. macroeconomy. A shortcoming of this approach is that
it does not allow us to separate the source of variation behind oil price shocks, i.e. whether
they are driven by supply rather than by demand.26 In other words, our identified energy
price shocks will be a linear combination of demand and supply shocks. However, given that
we are interested in identifying the sectors that are central to the propagation of energy price
shocks, rather than in determining the determinants of energy price fluctuations, the recursive
identification assumption is appropriate.

Figure 10 shows that an innovation to the real price of oil generates a protracted fall in
overall industrial output. Furthermore, in line with the literature, the recessionary impact
of an exogenous oil price disturbance is generally more severe in the Seventies than in later
decades. Notice, however that the difference across the two sub-samples is entirely accounted
for by the very early Seventies, a finding that cannot be uncovered with the simple sample-split
strategy considered in Edelstein and Kilian (2009), Blanchard and Gali (2007) and Blanchard
and Riggi (2013) and that validates the use of time-varying coefficients models.

The results for the individual sectors are reported in Figure 11. A number of interesting
results emerge. First, in most sectors the effect of an unexpected increase in the real price of
oil is generally negative in the first part of the sample, and the fall in production is much more
pronounced in energy intensive segments, like Business Equipment, Durable Consumption and
Material Goods. Second, most sectors display an attenuation of the recessionary impact of
energy price shocks. In some of them unexpected increases in the real price of oil end up being
associated with an expansion in production, consistently with the findings in Kilian (2009) that
attribute energy price surprises in the 2000s to increased demand for commodities rather than
to supply disruptions.27 Again, most of the changes over time occur in more energy intensive
sectors.

To assess the relative importance of each sector in explaining the changing pass-through of
energy price shocks to overall industrial activity we proceed by weighing the IRFs in different

25A similar identification assumption is maintained by Blanchard and Gali (2007) and Blanchard and Riggi
(2013).

26The debate on the relative role of supply and demand factors in determining oil prices dates back to Kilian
(2009).

27Blanchard and Gali (2007) also find that oil price innovations are associated with an increase in output
after the 80s in France and in Germany, see Figure 7.6 therein.
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sectors by their shares in overall industrial output (reported in Table 5). The resulting weighted
IRFs are reported in Figure 12 where, for the sake of clarity, we only focus on the responses
twelve months after the initial shock. When the relative weight of the various sectors is taken
into account, the relevance for overall business cycle fluctuations of developments in the motor
vehicles sector, which accounts for half of Durable Consumption, appears less relevant than
that of other sectors. Instead, the response of overall industrial output to oil price shocks and
its evolution over time are largely determined by that of the Durable Material sector, which
includes intermediate goods for a wide range of final products. This outcome suggests that the
increased efficiency in the energy use of automobiles has played a minor role in shaping the
oil/output relationship in the U.S. over the past forty years. In turn, greater energy efficiency
at the higher stages of the supply chain, as well as a larger role for demand shocks, are likely to
be the driving forces behind changes in the relationship between oil prices and U.S. aggregate
output.

7 Conclusions

In this paper we propose an estimator for large dimensional VAR models with flexible
parameter structure, capable of accommodating breaks in the relationships among economic
time series. Our procedure is based on the mixed estimator by Theil and Goldberger (1960),
which imposes stochastic constraints on the model coefficients, and on the nonparametric VAR
estimator proposed by Giraitis, Kapetanios, and Yates (2014). The use of stochastic constraints
mimics in a classical context the role of the prior in Bayesian models, allowing to bypass the
over-fitting problem that arises in large dimensional models.

We derive the asymptotic distribution of the estimator and evaluate the determinants of
its efficiency. We also discuss various aspects of the practical implementation of the estimator,
based on two alternative (fit and forecasting) criteria, and assess its finite sample performance
in Monte Carlo experiments.

We then use the non-parametric estimator in a forecasting exercise where we model up
to 78 U.S. macroeconomic time series. We find that the introduction of time variation in
the VAR model parameters yields an improvement in prediction accuracy over models with a
constant parameter structure, in particular when forecast combination is used to pool forecasts
obtained with models with different degrees of time variation and penalty parameters. We
also shed light on an issue that is central to the forecasting literature, namely how the size
of the information set interacts with time variation in the model parameters. Specifically, we
find that the relevance of time variation is not related to omitted variable problem and that,
as in the constant parameter case, a medium-sized TVP-VAR is at least as good as a large
TVP-VAR.

In a forecasting context, our non-parametric estimator compares well with the alternative
parametric approach by Koop and Korobilis (2013), when using either actual or simulated data,
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and can handle a larger number of variables.
Finally, to illustrate the use of our method in structural analysis, we analyze the changing

effects of oil price shocks on economic activity, a question that has spurred a large number
of studies in the applied macro literature in recent years. We find that the declining role of
oil prices in shaping U.S. business cycle fluctuations stems from changes related to Business
Equipment and Materials sector, rather than from the automobiles sector as argued by part of
the literature.

Overall, we believe that our findings illustrate how the econometric tool that we have
proposed opens the door to a number of interesting analyses on forecasting and on the nonlinear
transmission of shocks, which have been so far constrained by computational issues.
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No. Acronym (FRED database) Description SA Logs Prior mean 

1 AAA Interest rates on AAA bonds Not Seasonally Adjusted 0 1

2 AHEMAN Average Hourly Earnings Of Production And Nonsupervisory Employees: Manufacturing Not Seasonally Adjusted 1 1

3 AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees: Seasonally Adjusted 1 0

4 AWOTMAN Average Weekly Overtime Hours of Production and Nonsupervisory Seasonally Adjusted 1 0

5 BAA Interest rates on BAA bonds Not Seasonally Adjusted 1 1

6 CE16OV Civilian Employment Seasonally Adjusted 1 1

7 CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel Seasonally Adjusted 1 1

8 CPIAUCSL Consumer Price Index for All Urban Consumers: All Items Seasonally Adjusted 1 1

9 CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Seasonally Adjusted 1 1

10 CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care Seasonally Adjusted 1 1

11 CPITRNSL Consumer Price Index for All Urban Consumers: Transportation Seasonally Adjusted 1 1

12 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food Seasonally Adjusted 1 1

13 DMANEMP All Employees: Durable goods Seasonally Adjusted 1 0

14 DSPIC96 Real Disposable Personal Income Seasonally Adjusted 1 1

15 DPCERA3M086SBEA Real personal consumption expenditures (chain-type quantity index) Seasonally Adjusted 1 1

16 FEDFUNDS Effective Federal Funds Rate Not Seasonally Adjusted 0 1

17 GS1 1-Year Treasury Constant Maturity Rate Not Seasonally Adjusted 0 1

18 GS10 10-Year Treasury Constant Maturity Rate Not Seasonally Adjusted 0 1

19 GS5 5-Year Treasury Constant Maturity Rate Not Seasonally Adjusted 0 1

20 HOUST Housing Starts: Total: New Privately Owned Housing Units Started Seasonally Adjusted Annual Rate 1 0

21 HOUSTMW Housing Starts in Midwest Census Region Seasonally Adjusted Annual Rate 1 0

22 HOUSTNE Housing Starts in Northeast Census Region Seasonally Adjusted Annual Rate 1 0

23 HOUSTS Housing Starts in South Census Region Seasonally Adjusted Annual Rate 1 0

24 HOUSTW Housing Starts in West Census Region Seasonally Adjusted Annual Rate 1 0

25 INDPRO Industrial Production Index Seasonally Adjusted 1 1

26 IPBUSEQ Industrial Production: Business Equipment Seasonally Adjusted 1 1

27 IPCONGD Industrial Production: Consumer Goods Seasonally Adjusted 1 1

28 IPDCONGD Industrial Production: Durable Consumer Goods Seasonally Adjusted 1 1

29 IPDMAT Industrial Production: Durable Materials Seasonally Adjusted 1 1

30 IPFINAL Industrial Production: Final Products (Market Group) Seasonally Adjusted 1 1

31 IPMAT Industrial Production: Materials Seasonally Adjusted 1 1

32 IPNCONGD Industrial Production: Nondurable Consumer Goods Seasonally Adjusted 1 1

33 IPNMAT Industrial Production: nondurable Materials Seasonally Adjusted 1 1

34 LOANS Loans and Leases in Bank Credit, All Commercial Banks Seasonally Adjusted 1 1

35 M1SL M1 Money Stock Seasonally Adjusted 1 1

36 M2SL M2 Money Stock Seasonally Adjusted 1 1

37 MANEMP All Employees: Manufacturing Seasonally Adjusted 1 0

38 NAPM ISM Manufacturing: PMI Composite Index Seasonally Adjusted 0 0

39 NAPMEI Seasonally Adjusted 0 0

40 NAPMII [] Not Seasonally Adjusted 0 0

41 NAPMNOI ISM Manufacturing: New Orders Index Seasonally Adjusted 0 0

42 NAPMPI [] Seasonally Adjusted 0 0

43 NAPMSDI [] Seasonally Adjusted 0 0

44 NDMANEMP All Employees: Nondurable goods Seasonally Adjusted 1 0

45 OILPRICE [] Not Seasonally Adjusted 1 1

46 PAYEMS All Employees: Total nonfarm Seasonally Adjusted 1 1

47 PCEPI Personal Consumption Expenditures: Chain-type Price Index Seasonally Adjusted 1 1

48 PERMIT New Private Housing Units Authorized by Building Permits Seasonally Adjusted Annual Rate 1 0

49 PERMITMW New Private Housing Units Authorized by Building Permits in the Seasonally Adjusted Annual Rate 1 0

50 PERMITNE New Private Housing Units Authorized by Building Permits in the Seasonally Adjusted Annual Rate 1 0

51 PERMITS New Private Housing Units Authorized by Building Permits in the South Seasonally Adjusted Annual Rate 1 0

52 PERMITW New Private Housing Units Authorized by Building Permits in the West Seasonally Adjusted Annual Rate 1 0

53 PI Personal Income Seasonally Adjusted Annual Rate 1 1

54 PPIACO Producer Price Index: All Commodities Not Seasonally Adjusted 1 1

55 PPICRM Producer Price Index: Crude Materials for Further Processing Seasonally Adjusted 1 1

56 PPIFCG Producer Price Index: Finished Consumer Goods Seasonally Adjusted 1 1

57 PPIFGS Producer Price Index: Finished Goods Seasonally Adjusted 1 1

58 PPIITM Producer Price Index: Intermediate Materials: Supplies & Components Seasonally Adjusted 1 1

59 SandP S&P 500 Stock Price Index 1 1

60 SRVPRD All Employees: Service-Providing Industries Seasonally Adjusted 1 1

61 TB3MS 3-Month Treasury Bill: Secondary Market Rate Not Seasonally Adjusted 0 1

62 TB6MS 6-Month Treasury Bill: Secondary Market Rate Not Seasonally Adjusted 0 1

63 UEMP15OV Number of Civilians Unemployed for 15 Weeks & Over Seasonally Adjusted 1 0

64 UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks Seasonally Adjusted 1 0

65 UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over Seasonally Adjusted 1 0

66 UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks Seasonally Adjusted 1 0

67 UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks Seasonally Adjusted 1 0

68 UEMPMEAN Average (Mean) Duration of Unemployment Seasonally Adjusted 1 0

69 UNRATE Civilian Unemployment Rate Seasonally Adjusted 0 0

70 USCONS All Employees: Construction Seasonally Adjusted 1 1

71 USFIRE All Employees: Financial Activities Seasonally Adjusted 1 1

72 USGOOD All Employees: Goods-Producing Industries Seasonally Adjusted 1 0

73 USGOVT All Employees: Government Seasonally Adjusted 1 1

74 USMINE All Employees: Mining and logging Seasonally Adjusted 1 0

75 USPRIV All Employees: Total Private Industries Seasonally Adjusted 1 1

76 USTPU All Employees: Trade, Transportation & Utilities Seasonally Adjusted 1 1

77 USTRADE All Employees: Retail Trade Seasonally Adjusted 1 1

78 USWTRADE All Employees: Wholesale Trade Seasonally Adjusted 1 1

Table 1: Data description
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Lmse

M6 Optimized at each t

M7 Fixed at pre-sample optimal level

Lfit

M1 Optimized at each t

M2 Fixed at pre-sample optimal level

Table 2: Specifications for the TVP-VARs. The Lfit criterion is computed as Lfit(λ,H) =∣∣∣∑n1

i=1
rssin(λ,H)
var(yt,i)

−
∑n1

i
rssin1

var(yt,i)

∣∣∣ where n1 is a number of reference variables, rssn1 is the residual sum of squares
obtained with an n1 variate VAR, and rssn1(λ,H) is the residual sum of squares obtained with the TVP-VAR.
The Lmse criterion is computed as Lmse(λ,H) =

∑n1

i=1
mseih(λ,H)
var(yt,i)

, where mseh is the mean square prediction
error h steps ahead obtained with the TVP-VAR.
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H

1 6 12 24 1 6 12 24 1 6 12 24

0.5 1.17 1.10 1.03 0.92 1.07 0.85 0.84 0.94 1.40 1.33 1.13 0.90

0.6 1.12 1.01 1.02 0.99 1.02 0.90 0.93 0.96 1.28 1.25 1.12 0.90

0.7 1.03 0.97 0.99 1.03 0.97 0.97 0.99 0.98 0.96 0.93 0.95 0.96

0.8 1.01 0.98 0.99 0.97 0.99 0.97 0.96 0.95 0.97 0.94 0.95 0.95

0.9 1.02 0.98 0.98 0.96 1.00 0.96 0.95 0.94 0.98 0.96 0.97 0.96

1 1.02 0.98 0.98 0.95 1.00 0.96 0.95 0.93 0.98 0.97 0.98 0.96

0.5 1.03 1.04 1.08 1.33 0.95 0.97 1.03 1.27 0.97 0.94 0.98 0.98

0.6 1.00 0.97 1.03 1.13 0.93 1.02 1.07 1.12 0.97 0.94 0.98 1.04

0.7 1.00 0.98 1.01 1.05 0.95 0.99 1.01 0.99 0.97 0.95 0.98 1.01

0.8 1.01 0.99 0.99 0.99 0.97 0.98 0.97 0.96 0.97 0.96 0.97 0.98

0.9 1.02 0.99 0.98 0.96 0.98 0.97 0.95 0.94 0.98 0.97 0.98 0.98

1 1.02 0.99 0.98 0.95 0.98 0.96 0.95 0.94 0.98 0.98 0.99 0.98

M3 Optimized OPT 1.02 0.99 1.01 1.02 0.99 1.01 1.00 0.95 0.96 0.93 0.94 0.92

M4 Fixed OPT 1.01 0.98 1.01 1.03 0.96 1.01 1.01 0.96 0.98 0.97 1.00 1.02

0.5 1.06 1.09 1.10 1.62 1.01 0.98 0.98 1.49 1.16 1.09 1.07 1.06

0.6 1.08 1.00 0.89 0.84 0.99 0.96 0.90 0.98 1.12 1.05 0.98 0.93

0.7 1.12 1.03 0.95 0.88 1.01 0.91 0.87 0.89 1.16 1.10 0.99 0.88

0.8 1.15 1.06 0.98 0.88 1.01 0.88 0.84 0.85 1.18 1.13 1.00 0.84

0.9 1.14 1.07 0.98 0.88 1.02 0.87 0.84 0.86 1.18 1.15 1.03 0.88

1 1.14 1.05 0.98 0.88 1.02 0.87 0.84 0.86 1.19 1.16 1.04 0.90

0.5 1.01 1.08 1.26 2.13 0.93 1.02 1.16 2.03 0.99 0.97 1.02 1.15

0.6 1.01 0.97 1.02 1.11 0.93 1.00 1.05 1.11 0.97 0.93 0.96 1.01

0.7 1.01 0.97 0.97 0.99 0.95 0.97 0.97 0.96 0.96 0.93 0.94 0.92

0.8 1.03 0.98 0.96 0.93 0.98 0.94 0.93 0.92 0.98 0.95 0.94 0.89

0.9 1.03 0.98 0.96 0.92 1.00 0.94 0.92 0.91 1.00 0.98 0.97 0.92

1 1.04 0.98 0.95 0.92 1.00 0.93 0.92 0.91 1.00 0.99 0.98 0.92

M8 Optimized OPT 1.10 1.10 1.11 1.61 1.01 0.97 0.93 1.42 1.15 1.06 1.00 1.02

M9 Fixed OPT 0.99 1.04 1.16 2.08 0.95 1.00 1.02 1.99 0.99 0.92 0.95 1.10

Fixed

Optimized

Fixed

Optimized

Selection

method

M1

M2

M6

M7

λ

EmploymentFed Funds Rates

Forecast horizon Forecast horizonForecast horizon

CPI

Lfit

Lmse

Table 3: Root Mean Square Forecast Errors: TVP-VARs versus constant coefficients BVAR (20 variables).
The tables show the RMSE obtained by models with time varying parameters described in Table 2 relative to
those obtained with the benchmark large BVAR with constant parameters. Values below 1 (shaded in grey in
the table) imply that the model outperforms the benchmark. Values underlined indicate the cases in which the
Diebold Mariano test rejects the null hypothesis of equal forecast accuracy at the 10% confidence level. The
RMSE are computed on 499 out-of-sample forecast errors, from January 1970 to July 2013.
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Figure 1: Optimal λ - 20 variables TVP-VAR. The figure shows the evolution of the value of λ optimized
using the Lfit criterion in the TVP-VAR with 20 variables. Shaded areas indicate NBER-dated recessions.
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Figure 2: Optimal λ - 78 variables TVP-VAR. The figure shows the evolution of the value of λ optimized
using the Lfit criterion in the TVP-VAR with 78 variables. Shaded areas indicate NBER-dated recessions.
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Figure 3: Root Mean Square Forecast Errors: combined TVP-VARs versus constant coefficients BVAR (20
variables VARs). The bar plots show the RMSE obtained by equal weights forecast combination of models with
time varying parameters relative to that obtained with the BVAR with constant coefficients. Values below 1
imply that the TVP model outperforms the benchmark. Bars in grey indicate the forecast horizons for which
a Diebold-Mariano test does not reject the null hypothesis of equal forecast accuracy, those in red denote the
cases for which forecast accuracy is significantly different at the 10% confidence level.
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Figure 4: Cumulative sum of squared forecast error differentials: combined TVP-VARs versus constant
coefficients BVAR (20 variables VARs). The figure shows the Cumulative Sum of Squared Forecast Errors
Differentials between the equal weights forecast combination of models with time varying parameters and the
BVAR with constant coefficients. Positive and increasing values indicate that the TVP model outperforms the
benchmark, while negative and decreasing values suggest the opposite. Shaded areas indicated NBER-dated
recessions.
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Figure 5: Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 78 variables constant
coefficients BVAR. The bar plots show the RMSE obtained by equal weights forecast combination of 20 vari-
ables VARs with time varying parameters relative to that obtained with a 78 variables BVAR with constant
coefficients. Values below 1 imply that the TVP model outperforms the benchmark. Bars in grey indicate the
forecast horizons for which a Diebold-Mariano test does not reject the null hypothesis of equal forecast accuracy,
those in red denote the cases for which forecast accuracy is significantly different at the 10% confidence level.
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Figure 6: Cumulative sum of squared forecast error differentials: 20 variables combined TVP-VARs versus
78 variables constant coefficients BVAR. The figure shows the Cumulative Sum of Squared Forecast Errors
Differentials between the equal weights forecast combination of 20 variables VARs with time varying parameters
and a 78 variables BVAR with constant coefficients. Positive and increasing values indicate that the TVP model
outperforms the benchmark, while negative and decreasing values suggest the opposite. Shaded areas indicated
NBER-dated recessions.
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Figure 7: Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 78 variables combined
TVP-VARs. The bar plots show the RMSE obtained by equal weights forecast combination of 20 variables
VARs with time varying parameters relative to that obtained by equal weights forecast combination of 78
variables VARs with time varying parameters. Values below 1 imply that the TVP model with 20 variables
outperforms the benchmark. Bars in grey indicate the forecast horizons for which a Diebold-Mariano test
does not reject the null hypothesis of equal forecast accuracy, those in red denote the cases for which forecast
accuracy is significantly different at the 10% confidence level.
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Figure 8: Cumulative sum of squared forecast error differentials: 20 variables combined TVP-VARs versus 78
variables combined TVP-VARs. The figure shows the Cumulative Sum of Squared Forecast Errors Differentials
between the equal weights forecast combination of 20 variables VARs with time varying parameters and equal
weights forecast combination of 78 variables VARs with time varying parameters. Positive and increasing values
indicate that the TVP model with 20 variables outperforms the benchmark, while negative and decreasing values
suggest the opposite. Shaded areas indicated NBER-dated recessions.



Table 4: 1 step ahead, relative RMSEs
T Parametric Non parametric

Inv. RMSE Equal weights
DGP-1 (Random walk coefficients)

n=7
100 1 1.004 1.005
150 1 0.999 1.000
200 1 0.997 0.997

n=15
100 1 1.021 1.024
150 1 1.012 1.013
200 1 1.006 1.007

DGP-2 (Occasionally breaking coefficients)
n=7

100 1 0.96 0.96
150 1 0.96 0.96
200 1 0.96 0.96

n=15
100 1 0.96 0.96
150 1 0.95 0.95
200 1 0.94 0.94

DGP-3 (Sine function coefficients)
n=7

100 1 0.95 0.96
150 1 0.96 0.98
200 1 0.97 0.99

n=15
100 1 0.87 0.88
150 1 0.86 0.87
200 1 0.85 0.86

Note to Table 4. The table shows the ratio between the one step ahead RMSE attained by, respectively,
the nonparametric and the parametric model, averaged across the n variables. Forecasts are computed
on the second half of the sample, i.e. when T=100, forecasts are computed recursively for t=51 to
t=100, when T=150 forecasts are computed recursively for t=76 to t=150 and when T=200 forecasts are
computed recursively for t=101 to t=200.
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Figure 9: Forecast accuracy, nonparametric and parametric estimators

Note to Figure 9. The bar plots show the ratio between the RMSE attained by, respectively, the nonpara-
metric and the parametric model. Values below 1 imply that the nonparametric model outperforms the
parametric one. Bars in grey indicate that the Diebold-Mariano test does not reject the null hypothesis
of equal forecast accuracy, while those in red denote the cases for which forecast accuracy is significantly
different at the 10% confidence level.
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Market group Acronym Weight
Industrial Production Index INDPRO 100
Industrial Production: Business Equipment IPBUSEQ 9.18
Industrial Production: Consumer Goods IPCONGD 27.2
Industrial Production: Durable Consumer Goods IPDCONGD 5.59
Industrial Production: Nondurable Consumer Goods IPNCONGD 21.62
Industrial Production: Final Products (Market Group) IPFINAL 16.58
Industrial Production: Materials IPMAT 47.03
Industrial Production: Durable Materials IPDMAT 17.34
Industrial Production: Nondurable Materials IPNMAT 11.44

Table 5: Industrial production indexes by market group

Note to Table 5. The shares of market groups refer to 2011 Value added in nominal terms.
Nondurable consumer goods includes Consumer Energy products, which account for 5.7% of to-
tal IP. We have excluded from the analysis Industrial Production of Energy Materials, which
is part of the Materials (IPMAT) group and accounts for 18.3% of overall output. Source
http://www.federalreserve.gov/releases/g17/g17tab1.txt
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Figure 10: Response of Industrial production (overall index) to a 1% shock to the real price of
oil
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Figure 11: Response of Industrial production (sectors) to a 1% shock to the real price of oil



Figure 12: Contribution of selected sectors to the response of overall Industrial production (12
months out) to a 1% shock to the real price of oil
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A Comparison with the parametric estimator: technical

details

A.1 Monte Carlo exercise

In the Monte Carlo exercise the coefficients Λt are obtained through the following algorithm.

1. First, simulate n2 +n coefficients according to the chosen DGP, where n is the size of the
VAR.

2. The coefficients are then bounded by the largest one, so as to be lower or equal to 1 in
absolute value.

3. At each t the first n2 coefficients are orthogonalized through the Grahm-Shmidt procedure
and used to form an n× n orthonormal matrix. Call this matrix Pt.

4. The last n coefficients are used to form a diagonal matrix of eigenvalues Lt. At each point
in time the elements of Lt (call them lt) are transformed using the following function

l̃t = 0.5(1 + θL + eps) + 0.5(1− θL − eps) arctan(lt)/ arctan(1)− eps

where lt are the input eigenvalues (that by construction lie between -1 and 1), θL is the
desired lower bound and eps is a small constant that ensures that the upper bound is
1 − eps, that is strictly below 1. The resulting function is relatively smooth, as it can
be seen in Figure A.13 where l̃t is plotted against the possible values of lt (on the x axis
there are 201 equally spaced points between -1 and 1) and θL = 0.85.

5. Construct Λt = PtL̃tP
′
t

Figure A.13: Constrained simulated coefficients
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A.2 Dynamic model selection

The estimation method of the parametric model suggested by Koop and Korobilis depends
on a number of constants, the so called forgetting factor, θ, the prior tightness for the initial
conditions λ and the constant κ. To select θ and λ we follow their dynamic model selection
(DMS) algorithm. First the forgetting factor θ is made time-varying as follows:

θt = θmin + (1− θmin)Lft (43)

where ft = −NINT (ε̂′t−1ε̂t−1), NINT is the rounding to the nearest integer function, ε̂t−1

are the one step ahead forecast errors, θ = 0.96, L = 1.1 (values calibrated to obtain a
forgetting factor between 0.96 and 1). As for the prior tightness we use a grid of J values.
Each point in this grid defines a new model. Weights for each model j (defined πt/t−1,j) are
obtained by Koop and Korobilis as a function of the predictive density at time t − 1 through
the following recursions:

πt/t−1,j =
παt−1/t−1,j∑J
l=1 π

α
t−1/t−1,l

(44)

πt/t,j =
πt/t−1,jpj(yt|yt−1)∑J
l=1 πt/t−1,lpl(yt|yt−1)

(45)

where pj(yt|yt−1) is the predictive likelihood. Since this is a function of the prediction errors
and of the prediction errors variance, which are part of the output of the Kalman filter, the
model weights can be computed at no cost along with the model parameters estimation. Note
that here a new forgetting factor appears, α, which discounts past predictive likelihoods and
is set to 0.99. The constant κ is set to 0.96 throughout the exercise. At each point in time,
forecast are obtained on the basis of the model with the highest weight πt/t−1,j.

B The role of time-varying volatilities for forecasting

To check whether time-varying volatilities are important for the forecasting performance
of our model we have run a forecast competition between the estimator with and without the
correction for heteroskedasticity shown in equation (30). Since the estimation of the model in
(30) can not proceed equation by equation, we run the exercise for a quarterly VAR with 20
variables and 4 lags as in section 5.5 and we experiment with two possible values for H (0.96
and 0.98) and a grid of values for the reciprocal of the penalty parameter: ϕ = 1/λ.

The results of the exercise are reported in tables B.1 and B.2. Values of the RMSEs lower
than 1 (highlighted in bold) indicate that the estimator with constant volatilities outperforms
the one with time varying volatility. We underlie the cases in which differences in forecast
accuracy are significant at the 10% confidence level, according to the Diebold Mariano test.
The results turn out to be sharply in favour of the specification with constant covariances.
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For low values of the shrinkage parameters the performance of the homoskedastic VAR is
either in line or slightly worse than the one obtained with time-varying volatilities. When
the constraints are slightly relaxed, however, both the absolute and relative performance of
the baseline specification improve significantly. For values of ϕ higher than 10−2 the gains
in predictive accuracy yielded by the homoschedastic VAR increase steadily with the forecast
horizon and become as high as 20% at longer horizons.
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Relative RMSE Absolute
RMSE

Horizon 1 2 3 4 5 6 7 8
λ = 10−10

CPI 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.054
FFRATE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.209
EMPL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.240

λ = 10−4

CPI 1.29 1.23 1.21 1.18 1.16 1.14 1.11 1.09 0.054
FFRATE 1.05 1.00 1.01 1.01 1.02 1.02 1.02 1.02 0.210
EMPL 1.42 1.27 1.20 1.16 1.13 1.12 1.11 1.10 0.241

λ = 10−2

CPI 1.06 1.07 1.15 1.16 1.14 1.14 1.12 1.08 0.046
FFRATE 0.87 0.87 0.93 0.90 0.90 0.94 0.94 0.93 0.203
EMPL 1.06 1.05 1.05 1.05 1.06 1.07 1.08 1.08 0.208

λ = 2× 10−2

CPI 0.99 0.99 1.05 1.06 1.04 1.04 1.02 1.00 0.044
FFRATE 0.85 0.85 0.90 0.86 0.86 0.89 0.89 0.89 0.201
EMPL 0.96 0.96 0.97 0.98 0.99 1.01 1.02 1.03 0.198

λ = 3× 10−2

CPI 0.96 0.96 1.00 1.00 0.99 0.98 0.97 0.95 0.042
FFRATE 0.83 0.84 0.88 0.84 0.83 0.86 0.87 0.86 0.201
EMPL 0.91 0.92 0.93 0.94 0.95 0.97 0.99 1.00 0.193

λ = 4× 10−2

CPI 0.95 0.94 0.97 0.97 0.95 0.94 0.93 0.91 0.041
FFRATE 0.83 0.84 0.87 0.83 0.82 0.85 0.85 0.84 0.201
EMPL 0.89 0.90 0.91 0.91 0.93 0.95 0.97 0.98 0.190

λ = 5× 10−2

CPI 0.94 0.93 0.96 0.95 0.93 0.92 0.91 0.89 0.041
FFRATE 0.83 0.84 0.86 0.82 0.81 0.83 0.83 0.82 0.201
EMPL 0.88 0.89 0.89 0.90 0.91 0.93 0.96 0.97 0.188

Table B.1: Relative RMSE - Constant versus time-varying covariances - H = 0.96

Note to Table B.1. Each cell under the Relative RMSE heading reports the ratio between the RMSE obtained
assuming a constant covariance matrix of the VAR errors and that obtained using a time varying covariance
matrix. In bold we highlight numbers below 1, indicating that constant-covariance approach provides more
accurate forecasts. We underline the cases in which a Diebold Mariano test rejects the null hypothesis of
equal forecast accuracy at the 10% confidence level. In the Absolute RMSE column we report the average
RMSE (scaled by the variance of the target variable) over the 8 forecast horizons obtained with the constant-
covariance method. For both methods we use exponentially weighted moving average kernels with a discount
factor H = 0.96. The out of sample period runs from the first quarter of 1970 to the second quarter of 2013
(167 data points).
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Relative RMSE Absolute
RMSE

Horizon 1 2 3 4 5 6 7 8
λ = 10−10

CPI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.997 0.059
FFRATE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.998 0.203
EMPL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.998 0.241

λ = 10−4

CPI 1.43 1.38 1.37 1.34 1.31 1.28 1.25 1.22 0.059
FFRATE 1.06 1.00 1.02 1.02 1.02 1.02 1.01 1.01 0.203
EMPL 1.59 1.40 1.30 1.23 1.19 1.17 1.15 1.13 0.240

λ = 10−2

CPI 1.01 1.04 1.10 1.11 1.09 1.09 1.07 1.05 0.046
FFRATE 0.85 0.84 0.87 0.84 0.83 0.86 0.87 0.86 0.196
EMPL 0.98 0.98 0.98 0.99 0.99 1.00 1.01 1.01 0.199

λ = 2× 10−2

CPI 0.96 0.97 1.00 0.99 0.97 0.96 0.95 0.94 0.043
FFRATE 0.82 0.82 0.84 0.80 0.79 0.82 0.82 0.81 0.196
EMPL 0.90 0.90 0.90 0.91 0.92 0.94 0.96 0.97 0.191

λ = 3× 10−2

CPI 0.94 0.94 0.96 0.94 0.92 0.90 0.89 0.88 0.041
FFRATE 0.81 0.81 0.82 0.78 0.77 0.79 0.80 0.79 0.197
EMPL 0.86 0.86 0.86 0.87 0.88 0.91 0.93 0.94 0.188

λ = 4× 10−2

CPI 0.93 0.93 0.93 0.91 0.89 0.87 0.86 0.84 0.041
FFRATE 0.80 0.81 0.81 0.76 0.76 0.78 0.78 0.77 0.198
EMPL 0.84 0.84 0.84 0.85 0.86 0.89 0.91 0.93 0.186

λ = 5× 10−2

CPI 0.93 0.92 0.92 0.89 0.87 0.85 0.84 0.82 0.040
FFRATE 0.80 0.80 0.80 0.75 0.75 0.77 0.77 0.76 0.199
EMPL 0.82 0.83 0.83 0.83 0.84 0.87 0.90 0.91 0.186

Table B.2: Relative RMSE - Constant versus time-varying covariances - H = 0.98

Note to Table B.2. Each cell under the Relative RMSE heading reports the ratio between the RMSE obtained
assuming a constant covariance matrix of the VAR errors and that obtained using a time varying covariance
matrix. In bold we highlight numbers below 1, indicating that constant-covariance approach provides more
accurate forecasts. We underline the cases in which a Diebold Mariano test rejects the null hypothesis of
equal forecast accuracy at the 10% confidence level. In the Absolute RMSE column we report the average
RMSE (scaled by the variance of the target variable) over the 8 forecast horizons obtained with the constant-
covariance method. For both methods we use exponentially weighted moving average kernels with a discount
factor H = 0.98. The out of sample period runs from the first quarter of 1970 to the second quarter of 2013
(167 data points).
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